探秘HashMap:有趣的算法之旅
创始人
2025-07-14 15:11:11
0

HashMap是Java中非常重要且被广泛使用的数据结构,其内部实现充满了有趣而复杂的算法。我们研究下HashMap内部的一些核心算法,包括哈希冲突的解决、扩容策略、树化与树退化等。

1. 容量计算方法

即tableSizeFor方法。其主要目的是确保HashMap的容量始终是2的幂次方,这一特性对HashMap的哈希算法和扩容策略都至关重要。

// cap为用户传入的map初始化大小,将返回一个大于该数的,距离最近的2的幂次方
static final int tableSizeFor(int cap) {
    int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
  • Integer.numberOfLeadingZeros(cap - 1): 这个方法返回参数cap - 1的二进制表示中,从最高位开始连续的零的个数。这个值实际上表示了cap的二进制表示中,最高位的位置(不包括符号位)。
  • -1 >>> Integer.numberOfLeadingZeros(cap - 1): 这一步通过将-1右移numberOfLeadingZeros位,实际上将最高位至numberOfLeadingZeros位之间的所有位都置为1,其余位为0。这样做的目的是为了确保在后续的计算中,得到的值是一个2的幂次方减1的形式。
  • (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1: 这一步对上述得到的值进行判断和修正。如果计算结果小于0,说明cap为0,因此将容量设为1;如果计算结果超过了MAXIMUM_CAPACITY,即HashMap的最大容量限制,将容量设为MAXIMUM_CAPACITY;否则,将容量设为n + 1。这里的n + 1保证了返回的容量是2的幂次方。

总的来说,tableSizeFor方法确保了HashMap的容量始终是2的幂次方。这种容量设置的方式有助于提高哈希算法的性能,同时与HashMap的扩容策略密切相关。这样的设计使得HashMap在进行哈希计算时,可以通过位运算,取代一些昂贵的除法运算,从而提高计算效率。

2. 哈希冲突:链表和红黑树

在HashMap中,哈希冲突是指不同的键可能映射到相同的索引位置的情况。为了解决冲突,HashMap采用了拉链法,即将具有相同哈希码的键值对存储在同一个数组位置,以链表的形式。

class Node {
    final int hash;
    final K key;
    V value;
    Node next;

    Node(int hash, K key, V value, Node next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
}

上述Node类表示HashMap中的一个节点,包含了键、值、哈希码以及指向下一个节点的引用。当冲突的链表长度超过一定阈值(默认为8)时,HashMap会将链表转换为红黑树,以提高查找效率。

static final int TREEIFY_THRESHOLD = 8;

// 当链表长度达到8时,将链表转换为红黑树
void treeifyBin(Node[] tab, int hash) {
    // ...
    if (n >= TREEIFY_THRESHOLD) {
        // 执行转换为红黑树的操作
        treeifyBin(tab, hash);
        // ...
    }
    // ...
}

3. 扩容:2 的幂次方扩容

当HashMap的元素数量达到一定负载因子时(默认为0.75),为了避免链表过长,会触发扩容操作。在扩容时,HashMap将数组容量扩大至原来的两倍,并重新计算所有元素的索引位置。

void resize() {
    int oldCap = table.length;
    int newCap = oldCap << 1;
    // 创建新的数组,大小为原来的两倍
    Node[] newTab = new Node[newCap];
    // 重新计算元素在新数组中的位置
    // ...
    table = newTab;
}

oldCap表示原数组的容量,newCap表示新数组的容量,通过位运算将原容量左移一位实现扩容。

4. 哈希码计算:扰动函数

为了减小哈希冲突的概率,HashMap采用了扰动函数,将键的哈希码进行“扰动”。

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

这里的hash方法通过异或运算和无符号右移等位运算,将键的哈希码进行扰动,增加哈希码的随机性。

5. 树化与树退化

为了提高查找效率,当链表长度超过一定阈值(默认为8)时,HashMap会将链表转化成红黑树。而在删除或链表长度过短时,红黑树又可能退化成链表。

static final int UNTREEIFY_THRESHOLD = 6;

// 将红黑树退化为链表
void untreeify(Node[] tab) {
    // ...
    if ((n <= UNTREEIFY_THRESHOLD) && (first instanceof TreeNode))
        // 执行退化为链表的操作
        untreeify(tab);
    // ...
}

UNTREEIFY_THRESHOLD是一个阈值,表示当红黑树的节点数小于等于6时,将红黑树退化为链表。

6. 负载因子和重新哈希

负载因子是HashMap决定是否需要进行扩容的一个关键参数。当HashMap中的元素数量达到容量与负载因子的乘积时,就会触发扩容。在扩容时,HashMap会重新计算所有元素的索引位置,这个过程称为重新哈希。

static final float DEFAULT_LOAD_FACTOR = 0.75f;

void addEntry(int hash, K key, V value, int bucketIndex) {
    // ...
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 执行重新哈希的操作
        resize();
        // ...
    }
    // ...
}

DEFAULT_LOAD_FACTOR是一个默认的负载因子,表示当元素数量达到容量的75%时,触发扩容。

通过这些代码示例,我们可以稍微了解到HashMap内部的一些核心算法。这些算法保证了HashMap在面对不同场景时能够保持高效的性能,同时保证了数据结构的稳定性。深入了解这些算法不仅有助于我们理解HashMap的内部工作原理,还能够在需要的情况下更好地优化我们的代码。希望通过这次的有趣之旅,大家对HashMap内部的奥秘有了更深层次的理解。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...