数据存储架构从MySQL到ByteHouse,抖音精准推荐查询效率提升百倍
创始人
2025-07-14 03:20:52
0

抖音依靠自身推荐系统为用户推送可能感兴趣的视频内容,其中离不开对兴趣用户的精准圈选。对兴趣用户的圈选主要通过理解核心用户的偏好特征,判断两者偏好的相似性,从而构建同类用户的兴趣圈层,实现精准推荐。


以往的兴趣圈层往往依赖单一的维度或标签,比如内容类型、时长、地理特征等,难以揭示用户兴趣的底层逻辑。例如,“重庆美女小姐姐吃播视频”“二次元古风舞蹈视频”,从表面上看,吃播与舞蹈、重庆与古风.....标签类型完全不相同。经过深度分析,运营人员发现喜欢两个视频竟然是同类人群。通过挖掘用户底层兴趣逻辑,将共同兴趣的人划分在同一个兴趣圈层中,并向他们推荐更多相关内容,是抖音兴趣圈层平台主要的能力之一。


要搭建这样一套兴趣圈层平台,不仅需要精细的算法策略,对底层数据存储架构也是一大挑战。之前,技术团队主要采用MySQL作为存储架构。作为一种行式存储的数据库,MySQL对于大量数据的处理效率不尽如人意,需要高配置硬件,甚至要采用分片、读写分离等策略来提升性能,导致硬件成本显著提高。其中,MySQL的瓶颈还体现在:


• 每日新增数据量庞大:抖音用户圈层基础信息表日增万级数据,圈层作者信息表日增百万数据,圈层用户信息表日增千万条左右数据,已经达到 MySQL 秒级千万级查询的性能瓶颈。

• 难以承接业务复杂的圈选条件:当前圈层架构较为简单且为区分查询场景,当业务需要较复杂的泛化圈选条件时,需要使用者在平台等待时间较长。

• 圈层标题维度多:当前圈层有越来越多的标签描述,由于不同业务方通过不同视角理解圈层,如垂类标签/圈层关键词描述/圈层质量分类/圈层画风等,目前圈层信息实体特征就达到几十种。


为了解决以上问题,技术团队逐步将底层存储引擎基于ByteHouse进行重构。ByteHouse是火山引擎推出的一款OLAP引擎,具备查询效率高的特点,在硬件需求上相对较低,且具有良好的水平扩展性,如果数据量进一步增长,还能通过增加服务器数量来提升处理能力。

(MySQL与ByteHouse特性比较)

经过技术团队分析,兴趣圈层信息由模型生产,按时间分区批量导入;兴趣圈层特征多,业务方按照诉求对和自身业务相关的特征进行筛选,且圈层以统计分析为主,综合看来面向OLAP业务的ByteHouse是一款最合适的存储架构。


在一些典型兴趣圈层的查询场景中,比如“查询用户名为098765432123450(示例数据),关系为非高价值,作者名称带有‘xx’的圈层信息”,MySQL的查询耗时为2524ms,而ByteHouse仅需102ms。


基于 ByteHouse 替换 MySQL 重构抖音兴趣圈层平台后,不同场景的查询效率平均提升了 100 倍左右,大大提升了使用者体验。由于 ByteHouse 出色的查询性能和良好的数据压缩比,中等资源的服务器就能很好的满足需求,这也降低了综合硬件成本。


随着大数据和实时计算技术的发展,使用者对推荐的实时性要求越来越高。ByteHouse具备高效的数据处理能力,进一步为推荐场景提供更强大的查询分析支持。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...