AI技术的发展,对数字经济到底有什么用?
创始人
2025-07-13 11:01:39
0

人工智能(AI)产业是数字经济的重要组成部分。企业在数字化转型的早期实践中,比较关心基础类数据应用,比如基于查数、用数的管理支持或流程支持。

数据本身即产品,这是不少从事数字化工作者的直观逻辑。当数据治理完成后,能够看到这些数据并清楚地知道这些数据的真实业务含义,就已经相当不错了。

人工智能的应用,是数字化转型的未来趋势。近期的大模型产业之流行,也将这个趋势拉上了一个新的高度。

越来越多的企业开始认识到,人工智能技术正是数字化2.0的核心要义。

从数字化,到数智化,这是一个新赛道。很多传统的软件厂商都会面临挑战。传统的SaaS逻辑,ERP逻辑,本质上是以流程为中心进行方案设计和IT实施。

而在智能化的浪潮下,无论是甲方单位还是软件厂商,都应该关注数据本身的价值——从以流程为中心到以数据要素为中心。

数据的价值包含显性价值和隐性价值。显性价值,在“数据集成”和“数据贯通”完成的那一刻就已然实现了,而隐性价值则依赖于先进算法技术的加工和挖掘。

如果把数据比喻成食材。除了数据自身的质量很重要,加工数据的技术和手段同样重要(好的厨师)。云算力的普惠化和“低代码”的MaaS平台,把AI的门槛逐渐降低。

当企业可以轻便地接入AI能力的同时,接下来是一件非常关键的步骤,即构建专门针对AI应用落地的数据治理工作——这是数据治理的新方向!

在AI数据治理活动,除了需要不断完善基础的数据质量提升工作,还需要构建高质量的AI数据集。

例如,基于特定的策略筛选出对模型提升有重要价值的代表性数据样本,再或者,采用手动或半自动的方式构建符合训练过程范式的规整化数据集。

那么问题来了,基于AI的数字化应用,一般都有哪些具体的落地思路方向呢?

其实很简单,AI的本质,就是自动化,人工智能本身也是自动化技术的重要分支。

一是感知类应用。自动从多模态数据(图片、文本、视频、音频等)中,提炼有价值的业务信息,回答what now的问题。发生了什么。

例如,文本智能分析、语音特征识别、图像实时监控等。

二是认知类应用。利用上述信息,预测未知场景(当下不可知的场景或未来情况),回答what future相关的问题。

例如,财务指标预测、自然灾害预警、设备风险评估等。

三是决策类(生成类)应用。基于what now和what future的答案,告知人或者机器应该如何去做,回答how的问题。

例如,内容自动推荐、智能文档生成、资源动态调度、检修计划制定等。

AI技术的智能属性来自于数据资源本身蕴含的业务知识和专家经验。

将数据要素以AI模型的方式进行构建和部署,可以快速复制业务产能,打造出高效率的知识型、智慧型组织!

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...