鱼眼相机与超声波传感器融合实现鸟瞰近场障碍物感知
创始人
2025-07-13 01:30:23
0

本文经自动驾驶之心公众号授权转载,转载请联系出处。

  • 论文链接:https://browse.arxiv.org/pdf/2402.00637.pdf
  • 视频链接:https://youtu.be/JmSLBBL9Ruo

图片

本文介绍了鱼眼相机与超声传感器融合实现鸟瞰图中近场障碍物感知。准确的障碍物识别是自动驾驶近场感知范围内的一项基本挑战。传统上,鱼眼相机经常用于全面的环视感知,包括后视障碍物定位。然而,这类相机的性能在弱光照条件、夜间或者受到强烈阳光照射时会显著下降。相反,像超声传感器这类成本较低的传感器在这些条件下基本不受影响。因此,本文提出了首个端到端的多模态融合模型,其利用鱼眼相机和超声传感器在鸟瞰图(BEV)中实现高效的障碍物感知。最初,采用ResNeXt-50作为一组单模态编码器,以提取每个模态特有的特征。随后,与可见光谱相关联的特征空间被转换为BEV。这两种模态的融合是通过级联来实现的。同时,基于超声频谱的单模态特征图通过内容感知的空洞卷积,用于缓解融合特征空间中两种传感器之间的传感器错误对齐。最后,融合的特征被两阶段语义占用编码器用来生成用于精确障碍物感知的逐网格预测。本文进行了系统性研究,以确定两种传感器多模态融合的最优策略。本文深入展示了数据集创建过程、标注指南,并且进行全面的数据分析,以确保充分覆盖所有场景。当应用于本文数据集时,结果证明了本文所提出的多模态融合方法的鲁棒性和有效性。

本文主要贡献

  • 引入了一种新型的多传感器深度网络,其专门为鸟瞰图中的近场障碍物感知而设计。本文所提出的网络结合了鱼眼相机和超声传感器系统,这是首次朝着该方向努力;
  • 建立了构建包括鱼眼相机和超声传感器数据的多传感器数据集的策略。本文定义了标注规则,并且提供了相关的数据统计,这对于构建适用于类似应用的多模态模型是至关重要的;
  • 本文描述了一个实现非常高精度的端到端可训练网络的实现过程。此外,本文还提出了对proposal进行重构,以支持具有单模态输入的相同特征,从而对基于多模态解决方案的优势进行深入分析;
  • 本文进行了全面的消融研究,涉及各种提出的网络组件、不同的特征融合技术、不同的增强方法和各种损失函数。

图片

图片

图片

图片

图片

图片

图片

图片

图片

原文链接:https://mp.weixin.qq.com/s/B0zQZ2_SapKuynG2qis1ug

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...