Python处理流式数据输出
创始人
2025-07-12 10:20:51
0

在Python中,requests库是处理HTTP请求的一个非常流行和强大的工具。当需要处理大型数据或实时数据时,使用流式输出(streaming)可以有效地减少内存消耗,并提高处理速度。流式输出允许你按块读取内容,而不是一次性将整个响应内容加载到内存中。

如何使用requests实现流式输出

要在requests中启用流式输出,你需要在请求函数中设置stream参数为True。默认情况下,stream参数是False,这意味着requests会立即下载响应内容。

以下是一个基本的示例,展示了如何使用requests进行流式读取数据:

python
import requests


# 发起请求,启用流式输出
response = requests.get('http://httpbin.org/stream/20', stream=True)


# 按行遍历响应内容
for line in response.iter_lines():
    # 过滤掉可能的空行
    if line:
        print(line)

注意事项

使用流式输出时,需要确保及时处理每个块的数据。如果处理太慢,可能会导致客户端或服务器端的资源耗尽。

在完成数据处理后,应该关闭响应流。虽然requests会在垃圾收集时自动关闭未关闭的连接,但显式关闭是一个好习惯。可以使用response.close()方法或者使用with语句来自动管理上下文。

使用with语句自动管理流

为了确保流被正确关闭,可以使用with语句,这样无论处理过程中发生什么情况,都会在退出时关闭流。下面是使用with语句改写的示例:

python
import requests


url = 'http://httpbin.org/stream/20'


with requests.get(url, stream=True) as response:
    for line in response.iter_lines():
        if line:
            print(line)

处理二进制数据流

如果响应是二进制数据(例如,图片或文件),可以使用iter_content方法来按块读取数据。这里可以指定每个块的大小(以字节为单位):

python
import requests


url = 'http://example.com/somefile.zip'


with requests.get(url, stream=True) as response:
    with open('somefile.zip', 'wb') as fd:
        for chunk in response.iter_content(chunk_size=128):
            fd.write(chunk)

在这个示例中,我们按128字节的块读取数据,并将其写入文件。这种方法对于下载大文件非常有用,因为它可以防止大文件一次性加载到内存中,从而导致内存溢出。

通过以上方法,你可以有效地在Python中使用requests库实现流式输出,适用于各种需要按块处理数据的场景。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...