谷歌数学AI登Nature:IMO金牌几何水平,定理证明超越1978年吴文俊法
创始人
2025-07-11 09:51:45
0

谷歌DeepMind再发Nature,Alpha系列AI重磅回归,数学水平突飞猛进。

AlphaGeometry,无需人类演示达到IMO金牌选手的几何水平。

图片

有当年AlphaZero无需人类知识学围棋《Mastering the game of Go without human knowledge》的感觉了。

具体来说,30道IMO难度的几何定理证明题,AlphaGeometry做对25道,人类金牌选手平均25.9道,之前SOTA方法(1978年的吴文俊法)做对10道。

图片

IMO金牌得主陈谊廷(Evan Chen)负责评估AI生成的答案,他评价到:

AlphaGeometry的输出令人印象深刻,既可验证又干净。过去的人工智能解决方案偶然性很大,输出有时是正确的,需要人工检查。

AlphaGeometry没有这个弱点,它的解决方案具有机器可验证的结构,并且是人类可读的……它像学生一样使用带有角度和相似三角形的经典几何规则。

除成绩亮眼之外,这项研究中还有三个重点引起业界关注:

  • 无需人类演示,也就是只用了AI合成数据训练,延续了AlphaZero自学围棋的方式。
  • 大模型结合其他AI方法,与AlphaGo和OpenAI Q*传闻相似。
  • 与许多先前方法不同,AlphaGeometry可以生成人类可读的证明过程,且模型和代码都开源。

图片

团队认为,AlphaGeometry提供了一个实现高级推理能力、发现新知识的潜在框架。

这可能有助于推动人工智能的定理证明——被视为构建AGI的关键一步。

图片

另外,量子位在与作者团队交流过程中,打听到了是否真的会让AlphaGeometry去参加一届IMO竞赛,就像当年AlphaGo挑战人类围棋冠军一样。

他们表示正在努力提高系统的能力,还需要让AI能解决几何之外更广泛的数学问题。

AI证明几何也画辅助线

此前AI系统不能很好解决几何问题,卡就卡在缺乏优质训练数据。

人类学习几何可以借助纸和笔,在图像上使用现有知识来发现新的、更复杂的几何属性和关系。

谷歌团队为此用生成了10亿个随机几何对象图,以及其中点和线间的所有关系,最终筛选出1亿不同难度的独特定理和证明,AlphaGeometry在这些数据上完全从头训练。

图片

系统由两个模块组成,相互配合寻找复杂的几何证明。

  • 语言模型,预测可用来解决问题的几何结构(也就是添加辅助线)。
  • 符号推理引擎,使用逻辑规则推导出结论。

图片

一作Trieu Trinh介绍,AlphaGeometry的运作过程类似人脑分为快与慢两种类型。

也就是诺贝尔经济学奖得主丹尼尔·卡尼曼的畅销书《思考快与慢》中普及的“系统1、系统2”概念。

系统1提供快速、直观的想法,系统2提供更加深思熟虑、理性的决策。

一方面,语言模型擅长识别数据中的模式和关系,可以快速预测潜在有用的辅助结构,但通常缺乏严格推理或解释其决策的能力。

另一方面,符号推理引擎基于形式逻辑并使用明确的规则来得出结论。它们是理性且可解释的,但它们缓慢且不灵活,尤其是在独自处理大型、复杂的问题时。

例如在解决一道IMO 2015年的竞赛题时,蓝色部分为AlphaGeometry的语言模型添加的辅助结构,绿色部分是最终证明的精简版,共有109个步骤。

图片

在做题过程中,AlphaGeometry还发现了2004年IMO竞赛题中一个未使用的前提条件,并因此发现了更广义的定理版本。

不需要O是BC的中点这个条件,就能证明P、B、C共线。

图片

另外研究还发现,对于人类得分最低的3个问题,AlphaGeometry也需要非常长的证明过程和添加非常多的辅助结构才能解决。

但在相对简单的问题上,人类平均得分和AI生成的证明长度之间没有显著相关性 (p = −0.06)。

图片

One More Thing

对于AlphaGeometry与AlphaGo的联系和区别,在与团队交流过程中,谷歌科学家Quoc Le介绍到:

他们都是在一个非常复杂的决策空间中搜索,但AlphaGo的方法更传统(注:神经网络负责模式识别),AlphaGeometry中的神经网络负责建议下一步要采取的行动,指导搜索算法在决策空间中向正确的方向移动。

虽然这次成果随Alpha系列命名,第一单位也是Google DeepMind,但其实作者主要是前谷歌大脑成员。

Quoc Le大神不用过多介绍,一作Trieu Trinh与通讯作者Thang Luong都在谷歌工作了六七年,Thang Luong自己高中时也是IMO选手。

两位华人作者中,何河是纽约大学助理教授。吴宇怀此前参与了谷歌数学大模型Minerva研究,现在已经离开谷歌加入马斯克团队,成为xAI的联合创始人之一。

论文地址:https://www.nature.com/articles/s41586-023-06747-5。

参考链接:
[1]https://www.nature.com/articles/d4186-024-00141-5。

[2]https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...