我被 Parallel 函数雷了
创始人
2025-07-11 03:10:24
0

一、问题&分析

性能优化是技术人的永恒话题,当我们遇到性能问题时,你的第一反应是什么?

数据库索引优化,缓存优化,算法优化?

但,有时性能杀手往往就是性能优化引入的。

1.1. 案例

今天一大早,小艾刚到公司便收到一组系统报警,原来有一个接口报了一堆的慢情况。仔细排查,发现是前两天为服务域提供的一个订单的查询接口,该接口刚上线不久,正处于放量阶段,小艾立即惊出一身冷汗,不会是数据库出现了 慢SQL?记得上线前通过 explain 指令对 sql 进行过分析,明确已经使用了数据库索引。他赶紧打开阿里云控制台,快速进入 慢查询功能进行查看,但奇怪的是监控显示没有一条 慢查询,真是太诡异了。

还好不是数据库慢查询,不然可能存在将整个 MySQL 数据库拖垮的可能,小艾的悬着的心也终于放了下来。

可问题出在哪里呢?

这个查询接口非常简单,示例代码如下:

@GetMapping("getOrdersByUsers")
public RestResult> allOrderByUsers(@RequestParam List users){
    Stopwatch  stopwatch = Stopwatch.createStarted();
    List orders = getByUserId(users);
    List orderVOS = orders.stream()
            .map(order -> OrderVO.applyByParallel(order))
            .collect(Collectors.toList());
    log.info("get order by user cost {} ms", stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));
    return RestResult.success(orderVOS);
}

逻辑简单到令人发指,只有两步:

  1. 根据传入的 user id 从数据库中查询订单
  2. 将查询的 Order 转换为 OrderVO 返回用户

小艾,仔细观察这个接口,发现一个现象:当入参较多时,接口的性能变的非常差。

这个也比较好理解,系统使用的是 in 语句对数据进行查询,示例:select * from order_info where user_id in (?),当入参数据量非常大时,sql 执行耗时变高。这可能是一个原因,但MySQL 慢请求中未记录任何信息,说明 sql 的执行时间没有超过 1 秒,所以,这个只是一个表因。

为了更好的验证猜想,小艾对日志进行完善,整体如下:

@GetMapping("getOrdersByUsers")
public RestResult> allOrderByUsers(@RequestParam List users){
    Stopwatch  stopwatch = Stopwatch.createStarted();
    List orders = getByUserId(users);
    log.info("get data from DB cost {} ms", stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));

    stopwatch = Stopwatch.createStarted();
    List orderVOS = orders.stream()
            .map(order -> OrderVO.applyByParallel(order))
            .collect(Collectors.toList());
    log.info("convert to OrderVO cost {} ms", stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));
    return RestResult.success(orderVOS);
}

选了几个订单较多的用户进行测试,打印日志如下:

图片图片

好奇怪,数据库操作耗时有限,但 Order 向 OrderVO 的转换居然耗时这么多,真是太不可思议!

1.2. 问题分析

很明显是转化这步出了问题,其核心代码如下所示:

// 使用 Stream 流进行类型转化
List orderVOS = orders.stream()
        .map(order -> OrderVO.applyByParallel(order))
        .collect(Collectors.toList());

// Order 到 OrderVO 的转化逻辑
public static OrderVO applyByParallel(Order order){
    OrderVO orderVO = new OrderVO();
    orderVO.setId(order.getId());
    orderVO.setUserId(order.getUserId());

    orderVO.setStatus(OrderStatus.parallelParseByCode(order.getOrderStatus()));
    orderVO.setOrderType(OrderType.parallelParseByCode(order.getOrderType()));
    orderVO.setProductType(ProductType.parallelParseByCode(order.getProductType()));
    orderVO.setPromotionType(PromotionType.parallelParseByCode(order.getPromotionType()));
    return orderVO;
}

// 将 Code 转换为对应的枚举
public static OrderStatus parallelParseByCode(int code) {
    return Stream.of(values())
            .parallel()
            .filter(status -> status.getCode() == code)
            .findFirst()
            .orElse(null);
}

看完核心代码,请思考几分钟,问题可能出现在哪里?

  1. Stream 操作?Stream 比 for 循环性能超差些,但还不至于有这么大差异
  2. 反射、BeanCopy?核心代码没有使用这些 API,乖乖的进行 Coding

那问题究竟在哪?答案是  Stream 的 parallel() 函数。使用 parallel 函数最初的目标便是提升性能,为什么在这里却成了性能杀手?在解答前,先快速了解下这个函数:

`Stream.parallel()` 函数是 Java 8 中引入的新特性,底层采用了 Fork/Join 框架来实现并行处理。当你调用 `parallel()` 函数时,实际上是将流的并行性设计为 true。这意味着所进行的任何操作,如 `map` 或 `filter`,都是在并行流(parallel stream)上执行的。Fork/Join 框架首先会将一个大任务拆分成若干个小任务(Fork),然后分别对这些小任务进行处理,最后将得到的结果合并(Join)来得到最终结果。

这种方式能有效地将任务进行了分解,使得每个线程都可以独立地处理一部分任务,从而发挥了多核 CPU 的优势,提高了整体的处理效率。

从上述解释中可以看出,parallel 底层使用 Fork/Join 框架,对任务进行拆解,可以发挥多核的优势,那怎么就成了性能杀手呢?

先看下 Fork/Join 的整体执行流程:

图片图片

其执行主要分为以下几个阶段:

  1. 分割阶段(Fork Phase):将大任务拆分成若干个小任务,直到任务的规模足够小,可以直接执行。这通常是通过递归方式实现的。
  2. 执行阶段(Computation Phase):执行每个小任务,并生成结果。
  3. 结果合并阶段(Join Phase):合并小任务的结果,生成大任务的结果。这也通常通过递归的方式实现,与拆分阶段对应。
  4. 善后阶段(Finalize Phase):所有任务的结果都已合并完毕,大任务的结果也已经生成,可以进行善后工作,比如释放资源等。

每个阶段都有一定开销,从整个执行流程上看,执行阶段占的时间越长,性能提升就越高。在数据量较少,或者执行操作开销较大时,并行处理不但不能提高性能,还会由于线程管理和任务分配的开销而导致性能下降。

再次回到上面这个案例:

// 将 Code 转换为对应的枚举
public static OrderStatus parallelParseByCode(int code) {
    return Stream.of(values())
            .parallel()
            .filter(status -> status.getCode() == code)
            .findFirst()
            .orElse(null);
}

首先,枚举的数量非常小,其次,执行逻辑非常简单,仅进行一个等值比较。在这种情况下使用 parallel 函数,将致使线程管理和任务分配开销巨大,从而成为系统瓶颈。

二、解决方案

既然问题是通过 parallel 函数引入的,那解决方案便是:删除 parallel 函数调用,直接串行执行即可。

修改后的代码如下:

public static OrderStatus parseByCode(int code) {
    return Stream.of(values())
            // .parallel() 直接使用串行执行
            .filter(status -> status.getCode() == code)
            .findFirst()
            .orElse(null);
}

使用相同的数据重新测试,耗时如下图所示:

图片图片

可见,性能直接提升 10 倍不止。

三、示例&源码

代码仓库:https://gitee.com/litao851025/learnFromBug

代码地址:https://gitee.com/litao851025/learnFromBug/tree/master/src/main/java/com/geekhalo/demo/thread/parallelfun

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
着眼MAC地址,解救无法享受D... 在安装了DHCP服务器的局域网环境中,每一台工作站在上网之前,都要先从DHCP服务器那里享受到地址动...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...