8x7B MoE与Flash Attention 2结合,不到10行代码实现快速推理
创始人
2025-07-10 04:51:48
0

前段时间,Mistral AI 公布的 Mixtral 8x7B 模型爆火整个开源社区,其架构与 GPT-4 非常相似,很多人将其形容为 GPT-4 的「缩小版」。

我们都知道,OpenAI 团队一直对 GPT-4 的参数量和训练细节守口如瓶。Mistral 8x7B 的放出,无疑给广大开发者提供了一种「非常接近 GPT-4」的开源选项。

在基准测试中,Mistral 8x7B 的表现优于 Llama 2 70B,在大多数标准基准测试上与 GPT-3.5 不相上下,甚至略胜一筹。

图片

图片

图源:https://mistral.ai/news/mixtral-of-experts/

随着这项研究的出现,很多人表示:「闭源大模型已经走到了结局。」

短短几周的时间,机器学习爱好者 Vaibhav (VB) Srivastav 表示:随着 AutoAWQ(支持 Mixtral、LLaVa 等模型的量化)最新版本的发布,现在用户可以将 Mixtral 8x7B Instruct 与 Flash Attention 2 结合使用,达到快速推理的目的,实现这一功能大约只需 24GB GPU VRAM、不到十行代码。

图源:https://twitter.com/reach_vb/status/1741175347821883502

AutoAWQ 地址:https://github.com/casper-hansen/AutoAWQ

操作过程是这样的:

首先是安装 AutoAWQ 以及 transformers:

pip install autoawq git+https://github. com/huggingface/transformers.git

第二步是初始化 tokenizer 和模型:

图片

第三步是初始化 TextStreamer:

图片

第四步对输入进行 Token 化:

图片

第五步生成:

图片

当你配置好项目后,就可以与 Mixtral 进行对话,例如对于用户要求「如何做出最好的美式咖啡?通过简单的步骤完成」,Mixtral 会按照 1、2、3 等步骤进行回答。

图片

项目中使用的代码:

图片

Srivastav 表示上述实现也意味着用户可以使用 AWQ 运行所有的 Mixtral 微调,并使用 Flash Attention 2 来提升它们。

看到这项研究后,网友不禁表示:真的很酷。

更多相关链接,请参考:

模型地址:https://huggingface.co/models?search=mixtral%20awq

Transformer 中量化技术:https://huggingface.co/docs/transformers/main/en/quantization

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
规避非法攻击 用好路由器远程管... 单位在市区不同位置设立了科技服务点,每一个服务点的员工都通过宽带路由器进行共享上网,和单位网络保持联...
范例解读VB.NET获取环境变... VB.NET编程语言的使用范围非常广泛,可以帮助开发人员处理各种程序中的需求,而且还能对移动设备进行...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...