大家好,我是小林。
最近有一些同学问我,要准备到什么程度才能去找大厂日常实习?
其实大厂的日常实习面试和校招面试差不太多,面试的问题都差不多,八股+项目+算法,都必须要准备,只是说实习面试要求可能不会太严格,比如你实习的算法,即使没写出来,能说出大概的思路,其实也是能过的,秋招的话,可能没写出算法,大概率就凉了。
针对后端这一块的话,编程语言+MySQL+Redis+网络协议+操作系统+后端项目+算法,这几大块都需要好好准备一波,后端面试都是围绕这几大块知识进行考察。
虽然后端技术栈还包含消息队列、分布式、微服务,但是这些针对校招来说不是必须要掌握的内容,时间有限的情况下,可以延后学习。
今天就分享一个字节日常实习的一面和二面的Java后端面经,我把问题分类了一下,主要是网络+操作系统+Java+MySQL+Redis+算法这几大块问题,也做对应的解答,内容比较多,同学们可以收藏,后续慢慢细看&复习。
HTTP 与 HTTPS 网络层
主要通过DNS域名解析来完成的。域名解析的工作流程:
至此,我们完成了 DNS 的解析过程。现在总结一下,整个过程我画成了一个图。
域名解析的工作流程
根据 RFC 规范,GET 的语义是从服务器获取指定的资源,这个资源可以是静态的文本、页面、图片视频等。GET 请求的参数位置一般是写在 URL 中,URL 规定只能支持 ASCII,所以 GET 请求的参数只允许 ASCII 字符 ,而且浏览器会对 URL 的长度有限制(HTTP协议本身对 URL长度并没有做任何规定)。
比如,你打开我的文章,浏览器就会发送 GET 请求给服务器,服务器就会返回文章的所有文字及资源。
GET 请求
根据 RFC 规范,POST 的语义是根据请求负荷(报文body)对指定的资源做出处理,具体的处理方式视资源类型而不同。POST 请求携带数据的位置一般是写在报文 body 中,body 中的数据可以是任意格式的数据,只要客户端与服务端协商好即可,而且浏览器不会对 body 大小做限制。
比如,你在我文章底部,敲入了留言后点击「提交」(暗示你们留言),浏览器就会执行一次 POST 请求,把你的留言文字放进了报文 body 里,然后拼接好 POST 请求头,通过 TCP 协议发送给服务器。
POST 请求
TCP 是面向连接的协议,所以使用 TCP 前必须先建立连接,而建立连接是通过三次握手来进行的。三次握手的过程如下图:
TCP 三次握手
第一个报文 —— SYN 报文
第二个报文 —— SYN + ACK 报文
第三个报文 —— ACK 报文
三次握手的原因:
我们来看看 RFC 793 指出的 TCP 连接使用三次握手的首要原因:
The principle reason for the three-way handshake is to prevent old duplicate connection initiations from causing confusion.
简单来说,三次握手的首要原因是为了防止旧的重复连接初始化造成混乱。
我们考虑一个场景,客户端先发送了 SYN(seq = 90)报文,然后客户端宕机了,而且这个 SYN 报文还被网络阻塞了,服务端并没有收到,接着客户端重启后,又重新向服务端建立连接,发送了 SYN(seq = 100)报文(注意!不是重传 SYN,重传的 SYN 的序列号是一样的)。
看看三次握手是如何阻止历史连接的:
三次握手避免历史连接
客户端连续发送多次 SYN(都是同一个四元组)建立连接的报文,在网络拥堵情况下:
上述中的「旧 SYN 报文」称为历史连接,TCP 使用三次握手建立连接的最主要原因就是防止「历史连接」初始化了连接。
如果是两次握手连接,就无法阻止历史连接,那为什么 TCP 两次握手为什么无法阻止历史连接呢?
我先直接说结论,主要是因为在两次握手的情况下,服务端没有中间状态给客户端来阻止历史连接,导致服务端可能建立一个历史连接,造成资源浪费。
你想想,在两次握手的情况下,服务端在收到 SYN 报文后,就进入 ESTABLISHED 状态,意味着这时可以给对方发送数据,但是客户端此时还没有进入 ESTABLISHED 状态,假设这次是历史连接,客户端判断到此次连接为历史连接,那么就会回 RST 报文来断开连接,而服务端在第一次握手的时候就进入 ESTABLISHED 状态,所以它可以发送数据的,但是它并不知道这个是历史连接,它只有在收到 RST 报文后,才会断开连接。
可以看到,如果采用两次握手建立 TCP 连接的场景下,服务端在向客户端发送数据前,并没有阻止掉历史连接,导致服务端建立了一个历史连接,又白白发送了数据,妥妥地浪费了服务端的资源。
因此,要解决这种现象,最好就是在服务端发送数据前,也就是建立连接之前,要阻止掉历史连接,这样就不会造成资源浪费,而要实现这个功能,就需要三次握手。
所以,TCP 使用三次握手建立连接的最主要原因是防止「历史连接」初始化了连接。
TCP 协议的通信双方, 都必须维护一个「序列号」, 序列号是可靠传输的一个关键因素,它的作用:
可见,序列号在 TCP 连接中占据着非常重要的作用,所以当客户端发送携带「初始序列号」的 SYN 报文的时候,需要服务端回一个 ACK 应答报文,表示客户端的 SYN 报文已被服务端成功接收,那当服务端发送「初始序列号」给客户端的时候,依然也要得到客户端的应答回应,这样一来一回,才能确保双方的初始序列号能被可靠的同步。
四次握手与三次握手
四次握手其实也能够可靠的同步双方的初始化序号,但由于第二步和第三步可以优化成一步,所以就成了「三次握手」。
而两次握手只保证了一方的初始序列号能被对方成功接收,没办法保证双方的初始序列号都能被确认接收。
如果只有「两次握手」,当客户端发生的 SYN 报文在网络中阻塞,客户端没有接收到 ACK 报文,就会重新发送 SYN ,由于没有第三次握手,服务端不清楚客户端是否收到了自己回复的 ACK 报文,所以服务端每收到一个 SYN 就只能先主动建立一个连接,这会造成什么情况呢?
如果客户端发送的 SYN 报文在网络中阻塞了,重复发送多次 SYN 报文,那么服务端在收到请求后就会建立多个冗余的无效链接,造成不必要的资源浪费。
两次握手会造成资源浪费
即两次握手会造成消息滞留情况下,服务端重复接受无用的连接请求 SYN 报文,而造成重复分配资源。
在Linux 操作系统,可以使用kill命令来杀死进程。
首先,使用ps命令查找进程的PID(进程ID),然后使用kill命令加上PID来终止进程。例如:
ps -ef | grep <进程名> // 查找进程的PID
kill // 终止进程 在创建子进程的过程中,操作系统会把父进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。
图片
这样一来,子进程就共享了父进程的物理内存数据了,这样能够节约物理内存资源,页表对应的页表项的属性会标记该物理内存的权限为只读。
当父进程或者子进程在向共享内存发起写操作时,CPU 就会触发写保护中断,这个「写保护中断」是由于违反权限导致的,然后操作系统会在「写保护中断处理函数」里进行物理内存的复制,并重新设置其内存映射关系,将父子进程的内存读写权限设置为可读写,最后才会对内存进行写操作,这个过程被称为「**写时复制(Copy On Write)**」。
图片
写时复制顾名思义,在发生写操作的时候,操作系统才会去复制物理内存,这样是为了防止 fork 创建子进程时,由于物理内存数据的复制时间过长而导致父进程长时间阻塞的问题。
在 JDK 1.7 版本之前, HashMap 数据结构是数组和链表,HashMap通过哈希算法将元素的键(Key)映射到数组中的槽位(Bucket)。如果多个键映射到同一个槽位,它们会以链表的形式存储在同一个槽位上,因为链表的查询时间是O(n),所以冲突很严重,一个索引上的链表非常长,效率就很低了。
所以在 JDK 1.8版本的时候做了优化,当一个链表的长度超过8的时候就转换数据结构,不再使用链表存储,而是使用红黑树,查找时使用红黑树,时间复杂度O(log n),可以提高查询性能,但是在数量较少时,即数量小于6时,会将红黑树转换回链表。
图片
JDK 1.7 ConcurrentHashMap
在 JDK 1.7 中它使用的是数组加链表的形式实现的,而数组又分为:大数组 Segment 和小数组 HashEntry。Segment 是一种可重入锁(ReentrantLock),在 ConcurrentHashMap 里扮演锁的角色;HashEntry 则用于存储键值对数据。一个 ConcurrentHashMap 里包含一个 Segment 数组,一个 Segment 里包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素。
分段锁技术将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。
JDK 1.8 ConcurrentHashMap
在 JDK 1.7 中,ConcurrentHashMap 虽然是线程安全的,但因为它的底层实现是数组 + 链表的形式,所以在数据比较多的情况下访问是很慢的,因为要遍历整个链表,而 JDK 1.8 则使用了数组 + 链表/红黑树的方式优化了 ConcurrentHashMap 的实现,具体实现结构如下:
JDK 1.8 ConcurrentHashMap 主要通过 volatile + CAS 或者 synchronized 来实现的线程安全的。
添加元素时首先会判断容器是否为空:
如果根据存储的元素计算结果为空,则利用 CAS 设置该节点;
如果根据存储的元素计算结果不为空,则使用 synchronized ,然后,遍历桶中的数据,并替换或新增节点到桶中,最后再判断是否需要转为红黑树,这样就能保证并发访问时的线程安全了。
如果把上面的执行用一句话归纳的话,就相当于是ConcurrentHashMap通过对头结点加锁来保证线程安全的,锁的粒度相比 Segment 来说更小了,发生冲突和加锁的频率降低了,并发操作的性能就提高了。而且 JDK 1.8 使用的是红黑树优化了之前的固定链表,那么当数据量比较大的时候,查询性能也得到了很大的提升,从之前的 O(n) 优化到了 O(logn) 的时间复杂度。
除了ConcurrentHashMap,还可以如何将HashMap变为线程安全的?
Map synchronizedMap = Collections.synchronizedMap(new HashMap<>()); Redis常见的数据结构有哪些?以及底层是如何实现的?
Redis 提供了丰富的数据类型,常见的有五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)。
图片
我画了一张 Redis 数据类型和底层数据结构的对应关图,左边是 Redis 3.0版本的,也就是《Redis 设计与实现》这本书讲解的版本,现在看还是有点过时了,右边是现在 Redis 7.0 版本的。
String 类型的底层的数据结构实现主要是 SDS(简单动态字符串)。SDS 和我们认识的 C 字符串不太一样,之所以没有使用 C 语言的字符串表示,因为 SDS 相比于 C 的原生字符串:
List 类型内部实现
List 类型的底层数据结构是由双向链表或压缩列表实现的:
但是在 Redis 3.2 版本之后,List 数据类型底层数据结构就只由 quicklist 实现了,替代了双向链表和压缩列表。
Hash 类型的底层数据结构是由压缩列表或哈希表实现的:
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
Set 类型的底层数据结构是由哈希表或整数集合实现的:
Zset 类型的底层数据结构是由压缩列表或跳表实现的:
在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。
项目中为什么引入Redis呢?和本地缓存有哪些区别?
如果Redis数据超过内存限制,该如何处理?
在配置文件 redis.conf 中,可以通过参数 maxmemory
Redis 内存淘汰策略共有八种,这八种策略大体分为「不进行数据淘汰」和「进行数据淘汰」两类策略。
1、不进行数据淘汰的策略
noeviction(Redis3.0之后,默认的内存淘汰策略) :它表示当运行内存超过最大设置内存时,不淘汰任何数据,这时如果有新的数据写入,会报错通知禁止写入,不淘汰任何数据,但是如果没用数据写入的话,只是单纯的查询或者删除操作的话,还是可以正常工作。
2、进行数据淘汰的策略
针对「进行数据淘汰」这一类策略,又可以细分为「在设置了过期时间的数据中进行淘汰」和「在所有数据范围内进行淘汰」这两类策略。
在设置了过期时间的数据中进行淘汰:
在所有数据范围内进行淘汰:
Redis 选择「惰性删除+定期删除」这两种策略配和使用,以求在合理使用 CPU 时间和避免内存浪费之间取得平衡。
Redis 是怎么实现惰性删除的?
Redis 的惰性删除策略由 db.c 文件中的 expireIfNeeded 函数实现,代码如下:
int expireIfNeeded(redisDb *db, robj *key) {
// 判断 key 是否过期
if (!keyIsExpired(db,key)) return 0;
....
/* 删除过期键 */
....
// 如果 server.lazyfree_lazy_expire 为 1 表示异步删除,反之同步删除;
return server.lazyfree_lazy_expire ? dbAsyncDelete(db,key) :
dbSyncDelete(db,key);
}Redis 在访问或者修改 key 之前,都会调用 expireIfNeeded 函数对其进行检查,检查 key 是否过期:
惰性删除的流程图如下:
图片
Redis 是怎么实现定期删除的?
再回忆一下,定期删除策略的做法:每隔一段时间「随机」从数据库中取出一定数量的 key 进行检查,并删除其中的过期key。
1、这个间隔检查的时间是多长呢?
在 Redis 中,默认每秒进行 10 次过期检查一次数据库,此配置可通过 Redis 的配置文件 redis.conf 进行配置,配置键为 hz 它的默认值是 hz 10。
特别强调下,每次检查数据库并不是遍历过期字典中的所有 key,而是从数据库中随机抽取一定数量的 key 进行过期检查。
2、随机抽查的数量是多少呢?
我查了下源码,定期删除的实现在 expire.c 文件下的 activeExpireCycle 函数中,其中随机抽查的数量由 ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 定义的,它是写死在代码中的,数值是 20。
也就是说,数据库每轮抽查时,会随机选择 20 个 key 判断是否过期。
接下来,详细说说 Redis 的定期删除的流程:
可以看到,定期删除是一个循环的流程。
那 Redis 为了保证定期删除不会出现循环过度,导致线程卡死现象,为此增加了定期删除循环流程的时间上限,默认不会超过 25ms。
针对定期删除的流程,我写了个伪代码:
do {
//已过期的数量
expired = 0;
//随机抽取的数量
num = 20;
while (num--) {
//1. 从过期字典中随机抽取 1 个 key
//2. 判断该 key 是否过期,如果已过期则进行删除,同时对 expired++
}
// 超过时间限制则退出
if (timelimit_exit) return;
/* 如果本轮检查的已过期 key 的数量,超过 25%,则继续随机抽查,否则退出本轮检查 */
} while (expired > 20/4);定期删除的流程如下:
图片
因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。
为了解决这个问题,Redis 增加了 RDB 快照。所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。
所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。
因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。
Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:
save 900 1
save 300 10
save 60 10000别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:
这里提一点,Redis 的快照是全量快照,也就是说每次执行快照,都是把内存中的「所有数据」都记录到磁盘中。所以执行快照是一个比较重的操作,如果频率太频繁,可能会对 Redis 性能产生影响。如果频率太低,服务器故障时,丢失的数据会更多。
执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的,关键的技术就在于写时复制技术(Copy-On-Write, COW)。
执行 bgsave 命令的时候,会通过 fork() 创建子进程,此时子进程和父进程是共享同一片内存数据的,因为创建子进程的时候,会复制父进程的页表,但是页表指向的物理内存还是一个,此时如果主线程执行读操作,则主线程和 bgsave 子进程互相不影响。
图片
如果主线程执行写操作,则被修改的数据会复制一份副本,然后 bgsave 子进程会把该副本数据写入 RDB 文件,在这个过程中,主线程仍然可以直接修改原来的数据。
图片
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:
区别如下:
可以按照四个角度来分类索引。
下图,就是一个没有使用索引,并且是一个全表扫描的查询语句。
图片
对于执行计划,参数有:
type 字段就是描述了找到所需数据时使用的扫描方式是什么,常见扫描类型的执行效率从低到高的顺序为:
在这些情况里,all 是最坏的情况,因为采用了全表扫描的方式。index 和 all 差不多,只不过 index 对索引表进行全扫描,这样做的好处是不再需要对数据进行排序,但是开销依然很大。所以,要尽量避免全表扫描和全索引扫描。
range 表示采用了索引范围扫描,一般在 where 子句中使用 < 、>、in、between 等关键词,只检索给定范围的行,属于范围查找。从这一级别开始,索引的作用会越来越明显,因此我们需要尽量让 SQL 查询可以使用到 range 这一级别及以上的 type 访问方式。
ref 类型表示采用了非唯一索引,或者是唯一索引的非唯一性前缀,返回数据返回可能是多条。因为虽然使用了索引,但该索引列的值并不唯一,有重复。这样即使使用索引快速查找到了第一条数据,仍然不能停止,要进行目标值附近的小范围扫描。但它的好处是它并不需要扫全表,因为索引是有序的,即便有重复值,也是在一个非常小的范围内扫描。
eq_ref 类型是使用主键或唯一索引时产生的访问方式,通常使用在多表联查中。比如,对两张表进行联查,关联条件是两张表的 user_id 相等,且 user_id 是唯一索引,那么使用 EXPLAIN 进行执行计划查看的时候,type 就会显示 eq_ref。
const 类型表示使用了主键或者唯一索引与常量值进行比较,比如 select name from product where id=1。
需要说明的是 const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中。
除了关注 type,我们也要关注 extra 显示的结果。
这里说几个重要的参考指标: