除自身以外数组的乘积:三种解法及Java代码示例
创始人
2025-07-09 15:40:49
0

在处理数组相关的问题时,有时候需要计算除数组中某个元素以外的所有元素的乘积。这个问题可以通过多种方法解决。本文将首先给出题目的详细描述,然后介绍三种解法,并提供相应的Java代码示例。最后,对每种解法进行时间和空间复杂度的分析,帮助读者评估解法的效率和性能。

题目描述

给定一个整数数组 nums,返回一个数组 output,其中 output[i] 等于除 nums[i] 之外的所有元素的乘积。

注意:请不要使用除法,且在 O(n) 时间复杂度内完成此问题的解决。

示例:

输入: [1, 2, 3, 4]

输出: [24, 12, 8, 6]

解释: 除了自身以外的乘积为:[2x3x4, 1x3x4, 1x2x4, 1x2x3] = [24, 12, 8, 6]

1. 解法一:暴力法

暴力法是最简单直接的解法,即对于数组中的每个元素,都计算除自身以外的其他元素的乘积。具体步骤如下:

public int[] productExceptSelf(int[] nums) {
   int n = nums.length;
   int[] output = new int[n];
   
   for (int i = 0; i < n; i++) {
       int product = 1;
       for (int j = 0; j < n; j++) {
           if (i != j) {
               product *= nums[j];
          }
      }
       output[i] = product;
  }
   
   return output;
}

时间复杂度分析:

  • 外层循环遍历数组,时间复杂度为 O(n)。
  • 内层循环遍历数组,时间复杂度为 O(n)。
  • 总体时间复杂度为 O(n^2)。

空间复杂度分析:

  • 使用了额外的数组 output 来存储结果,空间复杂度为 O(n)。

2. 解法二:左右乘积列表

解法二利用两个辅助数组,分别记录每个元素左侧和右侧的乘积。具体步骤如下:

public int[] productExceptSelf(int[] nums) {
   int n = nums.length;
   int[] output = new int[n];
   
   int[] leftProducts = new int[n];
   int[] rightProducts = new int[n];
   
   leftProducts[0] = 1;
   for (int i = 1; i < n; i++) {
       leftProducts[i] = leftProducts[i - 1] * nums[i - 1];
  }
   
   rightProducts[n - 1] = 1;
   for (int i = n - 2; i >= 0; i--) {
       rightProducts[i] = rightProducts[i + 1] * nums[i + 1];
  }
   
   for (int i = 0; i < n; i++) {
       output[i] = leftProducts[i] * rightProducts[i];
  }
   
   return output;
}

时间复杂度分析:

  • 第一个循环遍历数组,时间复杂度为 O(n)。
  • 第二个循环遍历数组,时间复杂度为 O(n)。
  • 第三个循环遍历数组,时间复杂度为 O(n)。
  • 总体时间复杂度为 O(n)。

空间复杂度分析:

  • 使用了两个辅助数组来存储左侧和右侧的乘积,空间复杂度为 O(n)。

3. 解法三:空间优化

解法三对解法二进行了空间优化,只使用一个辅助数组来记录左侧的乘积,并在计算右侧乘积时即时更新结果。具体步骤如下:

public int[] productExceptSelf(int[] nums) {
   int n = nums.length;
   int[] output = new int[n];
   
   output[0] = 1;
   for (int i = 1; i < n; i++) {
       output[i] = output[i - 1] * nums[i - 1];
  }
   
   int rightProduct = 1;
   for (int i = n - 1; i >= 0; i--) {
       output[i] *= rightProduct;
       rightProduct *= nums[i];
  }
   
   return output;
}

时间复杂度分析:

  • 第一个循环遍历数组,时间复杂度为 O(n)。
  • 第二个循环遍历数组,时间复杂度为 O(n)。
  • 总体时间复杂度为 O(n)。

空间复杂度分析:

  • 只使用了一个辅助数组来存储左侧的乘积,空间复杂度为 O(n)。

结论

本文介绍了题目"除自身以外数组的乘积"的详细描述,并给出了三种解法:暴力法、左右乘积列表和空间优化。下面是它们的时间和空间复杂度的总结:

解法

时间复杂度

空间复杂度

暴力法

O(n^2)

O(n)

左右乘积列表

O(n)

O(n)

空间优化

O(n)

O(n)

从复杂度分析可以看出,解法二和解法三都能够在线性时间内完成计算,而且空间复杂度也相对较低。因此,解法二和解法三是更优的解决方案。

在实际应用中,根据具体的问题和要求,选择合适的解法可以提高算法的效率和性能。希望本文能够帮助读者理解和掌握解决"除自身以外数组的乘积"问题的不同解法,并在实际编程中得到应用。如果想要了解更多数组相关的问题和解法,建议进一步学习相关的算法和数据结构知识。

相关内容

热门资讯

PHP新手之PHP入门 PHP是一种易于学习和使用的服务器端脚本语言。只需要很少的编程知识你就能使用PHP建立一个真正交互的...
网络中立的未来 网络中立性是什... 《牛津词典》中对“网络中立”的解释是“电信运营商应秉持的一种原则,即不考虑来源地提供所有内容和应用的...
各种千兆交换机的数据接口类型详... 千兆交换机有很多值得学习的地方,这里我们主要介绍各种千兆交换机的数据接口类型,作为局域网的主要连接设...
什么是大数据安全 什么是大数据... 在《为什么需要大数据安全分析》一文中,我们已经阐述了一个重要观点,即:安全要素信息呈现出大数据的特征...
如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
P2P的自白|我不生产内容,我... 现在一提起P2P,人们就会联想到正在被有关部门“围剿”的互联网理财服务。×租宝事件使得劳...
Intel将Moblin社区控... 本周二,非营利机构Linux基金会宣布,他们将担负起Moblin社区的管理工作,而这之前,Mobli...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...