分布式存储系统在大数据处理中扮演着怎样的角色?
创始人
2025-07-09 05:40:42
0

大概总结下,主要包括以下角色:

1. 数据的源头与终点

传统上,无论是基于 MapReduce 的数据流,还是基于 Spark/Flink 的流水线,其数据的来源和最终落脚点都可以是分布式存储(比如 GFS、HDFS、S3)。

这是由于分布式存储通常具有很高的可用性,不太用担心数据丢失。但从另一方面来说,上面提到的几种分布式存储通常不具有数据库中的 Schema,导致在用的时候,缺少一些灵活性。

当然,对于流式系统来说,分布式存储肯定不是最典型的数据来源,而是各种在线的服务产生的事件。

2. 中间数据的落脚点

对于批处理的中间数据,如果量过大或者计算代价太大,比如 Spark 中的 RDD,会:

  1. 内存装不下 spill 到分布式存储中
  2. 在 shuffle 后,为了避免重算,通常要持久化到分布式存储系统上一份

即使是如 Flink 之类的流式处理系统,最近也在提存算分开——将中间状态外存,计算才能更好的扩缩容。传统上 Flink 使用了 RocksDB 之类的存储引擎,将状态数据存在各个计算节点本地;但为了上云,让计算更方便的弹性,也开始寻求将所有中间状态与计算节点解耦合,存到统一的分布式存储中。

3. 分布式数据库的基座

随着数据库本身越来越多的支持分布式部署和计算,传统上的大数据处理需求,一部分被内化为查询引擎层的分布式计算。这也是为什么,现代分布式数据库的查询引擎也多使用 MPP 方式,充分的利用多节点的计算能力,在单个查询内进行算子或者流水线粒度的分布式并行执行。

在这种情况下,分布式数据库的底层存储通常为分布式(KV)存储,且是和计算分离的(存算分开)。也就是说,数据通过查询引擎层,最终会以 KV 的形式落到分布式存储中,并供之后的查询支持。

如果存储节点本身可以定制,则通常会让其支持部分计算能力,以利用数据的亲和性,将部分计算下推到相关的存储节点上。如果存储是云上的 S3 等对象存储,无法定制,则通常会将数据在计算节点缓存,并且尽量的复用。

参考资料

[1]《系统日知录》专栏: https://xiaobot.net/p/system-thinking ,点击下面阅读原文跳转订阅。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...