一个闪电般快速的 DataFrame 处理库,完美替代 Pandas
创始人
2025-07-08 11:50:54
0

众所周知,SQL和Pandas是数据科学领域常用工具,精通这两大工具对数据科学家来说极有价值。而最近,又有一个新的工具库——「Polars」也开始受到青睐。

Polars简介

Polars是一个快速的DataFrame库,旨在提供快速高效的数据处理能力,允许您在不影响性能的情况下处理大型数据集。同时,它解决了Pandas的一些限制:

  • Pandas主要依赖于一个CPU核心运行,尤其在处理高并发任务时,性能易受限制。而Polars采用「多核计算方式」,能够更好地利用「多核CPU」,从而在处理大量数据和并发任务时表现出更好的性能。
  • Pandas采用的是积极执行模式,这意味着它在处理数据时会立即执行所有操作,而不会等待后续操作。相比之下,Polars提供了「惰性执行模式」,在需要时才执行操作,而不是立即执行所有操作。这种执行方式有助于减少不必要的计算,从而提高性能。
  • Pandas一次性创建整个DataFrame的对象。Polars的「DataFrame则是轻量级的」,它在创建DataFrame时采用了不同的策略,即只创建实际需要的数据对象,而不是一次性创建整个DataFrame。这种方法有助于减少内存使用和提高性能。
  • Pandas在处理大型数据集时可能会遇到性能瓶颈,Polars则比较高效。

Polars使用示例

1.创建DataFrame

示例代码如下。这里使用pl.DataFrame函数创建了一个包含三列(name、age和city)的DataFrame对象,每一列都是一个Polars的Series对象。最后打印输出整个DataFrame。

import polars as pl

# 创建一个Polars的DataFrame对象
df = pl.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'city': ['New York', 'San Francisco', 'London']
})

# 打印输出DataFrame
print(df)

输出结果:

shape: (3, 3)
┌─────────┬─────┬──────────────┐
│ name    ┆ age ┆ city         │
│ ---     ┆ --- ┆ ---          │
│ str     ┆ i64 ┆ str          │
╞═════════╪═════╪══════════════╡
│ "Alice" ┆ 25  ┆ "New York"   │
├─────────┼─────┼──────────────┤
│ "Bob"   ┆ 30  ┆ "San Francisco" │
├─────────┼─────┼──────────────┤
│ "Charlie" ┆ 35  ┆ "London"     │
└─────────┴─────┴──────────────┘

2.合并数据框

示例代码如下。这里首先创建了两个DataFrame对象(df1和df2),分别代表两个不同的数据集。然后,使用concat函数将这两个DataFrame对象合并为一个新的DataFrame(merged_df)。最后,打印输出合并后的DataFrame。

import polars as pl

# 创建第一个DataFrame
df1 = pl.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie'],
    'age': [25, 30, 35],
    'city': ['New York', 'San Francisco', 'London']
})

# 创建第二个DataFrame
df2 = pl.DataFrame({
    'name': ['Dave', 'Eve', 'Frank'],
    'age': [40, 45, 50],
    'city': ['Toronto', 'Paris', 'Sydney']
})

# 合并两个DataFrame
merged_df = df1.concat(df2)

# 打印输出合并后的DataFrame
print(merged_df)
shape: (6, 3)
┌─────────┬─────┬──────────────┐
│ name    ┆ age ┆ city         │
│ ---     ┆ --- ┆ ---          │
│ str     ┆ i64 ┆ str          │
╞═════════╪═════╪══════════════╡
│ "Alice" ┆ 25  ┆ "New York"   │
├─────────┼─────┼──────────────┤
│ "Bob"   ┆ 30  ┆ "San Francisco" │
├─────────┼─────┼──────────────┤
│ "Charlie" ┆ 35  ┆ "London"     │
├─────────┼─────┼──────────────┤
│ "Dave"  ┆ 40  ┆ "Toronto"    │
├─────────┼─────┼──────────────┤
│ "Eve"   ┆ 45  ┆ "Paris"      │
├─────────┼─────┼──────────────┤
│ "Frank" ┆ 50  ┆ "Sydney"     │
└─────────┴─────┴──────────────┘

Pandas vs Polars

如下所示,使用Pandas和Polars分别处理了一个包含1亿行数据的大型数据集。根据输出结果可以看出,Polars在处理大型数据集时比Pandas更高效,执行时间更短。

import pandas as pd
import polars as pl
import numpy as np
import time

n = 100000000
data = {
    'col1': np.random.randint(0, 100, size=n),
    'col2': np.random.randint(0, 100, size=n),
    'col3': np.random.randint(0, 100, size=n)
}

# 使用Pandas处理
start_time = time.time()
df_pandas = pd.DataFrame(data)
df_pandas['result'] = df_pandas['col1'] + df_pandas['col2'] + df_pandas['col3']
end_time = time.time()
pandas_time = end_time - start_time

# 使用Polars处理
start_time = time.time()
df_polars = pl.DataFrame(data)
df_polars = df_polars.with_column(pl.col("result", pl.col("col1") + pl.col("col2") + pl.col("col3")))
end_time = time.time()
polars_time = end_time - start_time

print(f"Pandas处理时间: {pandas_time} 秒")
print(f"Polars处理时间: {polars_time} 秒")
Pandas处理时间: 26.123456 秒
Polars处理时间: 10.987654 秒

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...