DeepMind 推出 AI 工具 GNoME,号称已发现 220 万种新晶体材料
创始人
2025-07-07 23:01:23
0

12 月 1 日消息,谷歌旗下 DeepMind 日前在《自然》期刊上展示了自家 AI 工具 GNoME,并介绍了 AI 在材料科学上的相关应用,据悉,DeepMind 使用 GNoME 发现了 220 万种新晶体,其中有 38 万种晶体属于稳定材料,可以在实验室制造,有望应用在电池或是超导体等方面。

▲ 图源 DeepMind

目前 ICSD 数据中,约有 2 万种晶体在计算上被认为处于“稳定态”,此前 Materials Project 等团队通过一系列计算方法,又找出了 2.8 万种晶体。不过 DeepMind 认为,此前业界经过改进的计算方法,虽然能够加快发现新晶体结构的速度,但是时间与金钱成本相当高。

而 DeepMind 的新工具 GNoME,据称突破了此前的各种计算方法,能够准确预测一系列稳定的晶体结构,并从中生成了 220 万种材料,DeepMind 声称,如果仅凭借人力计算出这些材料,需要花费 800 年。

▲ 图源 DeepMind

IT之家从 DeepMind 报告中获悉,GNoME 开发材料的效率相当高,该模型一共设计了 5.2 万种新型石墨烯层状化合物,而在之前,人类只鉴定出约 1,000 种类似的材料。此外,GNoME 还发现 528 种潜在的锂离子导体,导电能力可达之前材料的 25 倍。科学家认为,仅仅是上述发现,就有望改善目前电子产品中应用的电池能耗。

▲ 图源 DeepMind

DeepMind 提到, GNoME 采用两种策略来寻找材料,第一种是根据已知晶体结构创造候选物,另一种则是基于化学公司,以更随机的方式探索候选物结构。该模型同时通过神经网络来处理和分析上述两种方法的输出,使用密度泛函理论(Density Functional Theory)计算,来评估这些候选物的稳定性。并利用一种称为“主动学习(Active Learning)”的方法来提高晶体预测精准度和效率,从而大幅增加发现新材料的速度和成功率。

▲ 图源 DeepMind

GNoME 模型旨在是降低发现新材料的成本,目前全球的科学家已在实验室制造出 736 种 GNoME 所预测的新材料,这证明了 GNoME 的晶体预测在现实中的准确性与可行性,而 DeepMind 目前已经将 GNoME 新发现的晶体数据库公开,协助科研人员测试和制造候选材料。

相关内容

热门资讯

PHP新手之PHP入门 PHP是一种易于学习和使用的服务器端脚本语言。只需要很少的编程知识你就能使用PHP建立一个真正交互的...
网络中立的未来 网络中立性是什... 《牛津词典》中对“网络中立”的解释是“电信运营商应秉持的一种原则,即不考虑来源地提供所有内容和应用的...
各种千兆交换机的数据接口类型详... 千兆交换机有很多值得学习的地方,这里我们主要介绍各种千兆交换机的数据接口类型,作为局域网的主要连接设...
全面诠释网络负载均衡 负载均衡的出现大大缓解了服务器的压力,更是有效的利用了资源,提高了效率。那么我们现在来说一下网络负载...
什么是大数据安全 什么是大数据... 在《为什么需要大数据安全分析》一文中,我们已经阐述了一个重要观点,即:安全要素信息呈现出大数据的特征...
如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
P2P的自白|我不生产内容,我... 现在一提起P2P,人们就会联想到正在被有关部门“围剿”的互联网理财服务。×租宝事件使得劳...
Intel将Moblin社区控... 本周二,非营利机构Linux基金会宣布,他们将担负起Moblin社区的管理工作,而这之前,Mobli...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...