推荐多任务 2023 最新进展:用户生命周期视角下的多任务推荐模型 STAN
创始人
2025-07-07 15:50:33
0

一、业务背景

本文工作是从业务出发提出的一项创新性工作,首先来介绍一下业务背景。

图片

图中所示是常见的 Shopee 双列流 feed,用户点击一个直播后,会进入全屏沉浸流,产生消费时长,同时也可以点击购买商品,产生消费下单。

该路径下的用户会经历几个阶段:

  • 新用户阶段,订单与时长都较低。
  • 后续在平台进行闲逛,时长增加,订单转化仍较低,对于此部分用户,不适合推荐杂乱的直播间,而更适合推荐优质商品的、能够让人沉浸的直播间,会让用户逛得更久。
  • 对于平台的忠诚用户,其 CVR 转化较高,但其目标明确,时长可能会相应减少,对于此部分用户,适合推荐简单易转化的商品。

图片

因此,不同用户群体对不同任务指标的偏好相差较大,通过数据分析,我们发现 CTR、停留时长、CVR 任务的用户群分布类似于幂律分布。对于不同阶段的用户,CTR、停留时长、CVR 等分布也不同,新用户的 CTR、停留时长等分布较为靠后。因此,我们观测到不同任务指标的偏好与用户当前的状态密切相关,且用户状态会随时间而变。

二、关键问题

图片

我们从数据分析中提炼出了如下的关键问题:现有方法中在多任务优化时,对所有用户一视同仁,会导致优化跷跷板现象。因此问题核心是要准确追踪用户状态,才能同时提高 CTR、时长和订单指标。对此问题进行拆解,可以得到如下三个子问题:如何识别用户状态,如何追踪用户状态信息以及如何结合用户状态优化多任务模型。

三、解决方案:STAN

图片

针对以上问题,我们提出了 STAN 这一解决方案。STAN 网络如上图所示,分为几个部分:右侧是传统的 MMoE 的模型结构,是 PLE 模型;左侧是对用户信息建模,用户信息会反映在 loss 上,对 loss 进行调整。

1、雾里看花:如何识别用户状态?

图片

首先,第一个问题是如何识别用户状态。我们使用了用户特征抽取网络建立特征间的交互关系,通过 Attention 网络结构,针对特定任务生成含有用户倾向信息的用户表征。在此之上构建 loss,Label 为用户是否点击、购买等。这里没有 Item 侧信息,Label 的平均估计为用户对 CTR、CVR、时长等的偏好。

2、拨云见日:如何准确追踪用户状态?

图片

通过对用户每个目标的预估值,就能够大概知道用户处于哪个状态,同时针对每个用户,我们引入了用户自适应的 Beta 分布对用户倾向的预测值重采样。Beta分布在用户数据较少情况下置信度低,此时预估值较为不准确,需要引入重采样校正方法校正产出预估值,从而降低极端数据影响。

3、登堂入室:如何结合用户状态,优化多任务模型?

图片

最后是结合用户状态,优化多任务模型。多任务模型的优化部分会叠加本身多任务模型 loss 与用户状态 loss,同时训练,同步迭代。

四、离线效果

1、离线效果:理解性实验

图片

首先,我们进行了理解性试验,验证离线效果。

如何验证本文方法能否识别用户状态呢?我们对比了同一组用户在不同模型的表征。如上图所示,STAN 模型对于 Wander、Stick、Loyal 用户分群下的表示比 PLE 区分度更大。该图是对用户 Emb 降维到二维空间构建的,PLE、STAN 模型用的用户 Emb 是通过 userid 抽取得到的。

另一个问题是,本文方法能否准确追踪用户状态?我们对比了同一组用户在不同日期的状态,如上图右下角的图中所示,五星表示用户,Day 1 用户处于 New 的状态,Day 31 则变为 Wander 和 Stick 状态,说明本方法能够自适应地追踪用户状态的变迁。

2、离线效果:Shopee Dataset

图片

我们采用工业数据集对效果进行了验证,为了方便对比,我们使用了三周的数据进行训练,一周的数据进行测试。评估指标是 AUC,NDCG@1。在图中的 PLE 模型中,我们添加了 stage 的标识,固定了 2 个 stage,任务准确率有一定提升。在增加自适应 stage 后,准确率有所提升,但模型波动较大。加入 Beta 重采样后,准确率稳中有升,模型更加稳定。

3、离线效果:Public Dataset

图片

我们在公开数据集:微信视频号数据集上进行了验证,其中有三个目标:点赞、点 up 主头像、转发,评估指标是 AUC,NDCG@5,其中 NDCG@5 是该数据集中的公开对比指标。从图中可以看出,实验效果与 Shopee 数据集表现类似。

五、工作价值

图片

我们将此工作在线上进行了验证,base 是 PLE 模型,实验组增加了 STAN 模型。实验效果 CTR+3.94%,staytime+3.05%,order+0.88%,每个指标都有所增长。其中 order 增长较小,是因为 Shopee 平台上的 order 量还比较小,相应的用户群也较小,因此提升稍弱一些。

本文的工作已被 Recsys’23 接收。

六、结论展望

图片

总结来说,我们应当重视推荐系统中用户的生命周期;在多任务学习中需要显式建模用户生命周期;同时我们需要立足于线上真实分布的数据,深挖技术突破点。

未来,我们会在每一层的推荐候选中结合用户生命周期进行细粒度调整;同时也希望创新方法可以落地,业务也需要进行持续创新。

相关内容

热门资讯

PHP新手之PHP入门 PHP是一种易于学习和使用的服务器端脚本语言。只需要很少的编程知识你就能使用PHP建立一个真正交互的...
网络中立的未来 网络中立性是什... 《牛津词典》中对“网络中立”的解释是“电信运营商应秉持的一种原则,即不考虑来源地提供所有内容和应用的...
各种千兆交换机的数据接口类型详... 千兆交换机有很多值得学习的地方,这里我们主要介绍各种千兆交换机的数据接口类型,作为局域网的主要连接设...
全面诠释网络负载均衡 负载均衡的出现大大缓解了服务器的压力,更是有效的利用了资源,提高了效率。那么我们现在来说一下网络负载...
什么是大数据安全 什么是大数据... 在《为什么需要大数据安全分析》一文中,我们已经阐述了一个重要观点,即:安全要素信息呈现出大数据的特征...
如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
P2P的自白|我不生产内容,我... 现在一提起P2P,人们就会联想到正在被有关部门“围剿”的互联网理财服务。×租宝事件使得劳...
Intel将Moblin社区控... 本周二,非营利机构Linux基金会宣布,他们将担负起Moblin社区的管理工作,而这之前,Mobli...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...