简洁编程之道,十个Python Itertools方法助你事半功倍
创始人
2025-07-06 17:31:43
0

简介

Python的编程优势在于它的简洁性。这不仅是因为Python语法优雅,还因为它有许多精心设计的内置模块,可以帮助开发者高效地实现常用功能。

itertools模块就是一个很好的例子,它为开发者提供了许多强大的工具,可以用更短的代码来操作Python的可迭代对象,帮助开发者事半功倍地完成任务。

1. itertools.product():避免嵌套循环的巧妙方式

当程序变得越来越复杂时,可能需要编写嵌套循环。与此同时,Python代码将变得丑陋和难以阅读:

list_a = [1, 2020, 70]
list_b = [2, 4, 7, 2000]
list_c = [3, 70, 7]

for a in list_a:
    for b in list_b:
        for c in list_c:
            if a + b + c == 2077:
                print(a, b, c)
# 70 2000 7

如何改进上述代码,使其具有Python风格?

可以使用itertools.product()函数:

from itertools import product

list_a = [1, 2020, 70]
list_b = [2, 4, 7, 2000]
list_c = [3, 70, 7]

for a, b, c in product(list_a, list_b, list_c):
    if a + b + c == 2077:
        print(a, b, c)
# 70 2000 7

如上所示,它返回输入可迭代对象的笛卡尔积,帮助将3个嵌套的for循环合并为一个。

2. itertools.compress():过滤数据的便捷方式

可以通过一个或多个循环来过滤列表中的项目。

但有时候,可能不需要编写任何循环,而是使用函数itertools.compress()。

itertools.compress()函数返回一个迭代器,该迭代器根据对应的布尔掩码值对可迭代对象进行过滤。

例如,以下代码使用itertools.compress()函数选择真正的数据:

import itertools
leaders = ['Yang', 'Elon', 'Tim', 'Tom', 'Mark']
selector = [1, 1, 0, 0, 0]
print(list(itertools.compress(leaders, selector)))
# ['Yang', 'Elon']

第二个参数selector作为一个掩码,也可以定义为以下形式:

selector = [True, True, False, False, False]

3. itertools.groupby():对可迭代对象进行分组

itertools.groupby()函数是将可迭代对象中相邻的重复元素进行分组的一种便捷方式。

例如,可以对一个长字符串进行如下分组:

from itertools import groupby

for key, group in groupby('YAaANNGGG'):
    print(key, list(group))
# Y ['Y']
# A ['A']
# a ['a']
# A ['A']
# N ['N', 'N']
# G ['G', 'G', 'G']

此外,还可以利用它的第二个参数来告诉groupby()函数如何判断两个元素是否相同:

from itertools import groupby

for key, group in groupby('YAaANNGGG', lambda x: x.upper()):
    print(key, list(group))
# Y ['Y']
# A ['A', 'a', 'A']
# N ['N', 'N']
# G ['G', 'G', 'G']

4. itertools.combinations():获取可迭代对象中给定长度的所有组合

对于初学者来说,编写一个正确的函数来获取列表的所有可能组合可能需要一些时间。

实际上,如果使用itertools.combinations()函数,可以很容易地实现:

import itertools

author = ['Y', 'a', 'n', 'g']

result = itertools.combinations(author, 2)

for x in result:
    print(x)
# ('Y', 'a')
# ('Y', 'n')
# ('Y', 'g')
# ('a', 'n')
# ('a', 'g')
# ('n', 'g')

如上述程序所示,itertools.combinations()函数有两个参数,一个是原始可迭代对象,另一个是函数生成的子序列的长度。

5. itertools.permutations(): 获取可迭代对象中给定长度的所有排列

既然有一个函数可以获取所有组合,当然还有另一个名为itertools.permutations的函数可以获取所有可能的排列:

import itertools

author = ['Y', 'a', 'n', 'g']

result = itertools.permutations(author, 2)

for x in result:
    print(x)

# ('Y', 'a')
# ('Y', 'n')
# ('Y', 'g')
# ('a', 'Y')
# ('a', 'n')
# ('a', 'g')
# ('n', 'Y')
# ('n', 'a')
# ('n', 'g')
# ('g', 'Y')
# ('g', 'a')
# ('g', 'n')

如上所示,itertools.permutations()函数的使用方式与itertools.combinations()函数类似。唯一的区别在于它们的结果。

6. itertools.accumulate():从可迭代对象生成累积项

基于可迭代对象获取一系列累积值是一种常见的需求。借助itertools.accumulate()函数的帮助,不需要编写任何循环就能实现。

import itertools
import operator

nums = [1, 2, 3, 4, 5]
print(list(itertools.accumulate(nums, operator.mul)))
# [1, 2, 6, 24, 120]

如果不想使用operator.mul,上述程序与以下程序相同:

import itertools

nums = [1, 2, 3, 4, 5]
print(list(itertools.accumulate(nums, lambda a, b: a * b)))
# [1, 2, 6, 24, 120]

7. itertools.repeat(), itertools.cycle(), itertools.count():创建无限迭代器

在某些情况下,开发者需要获得一个无限迭代器。有3个函数可以帮助实现:

7.1 itertools.repeat():重复生成相同的项目

例如,可以按以下方式获取三个相同的“Yang”:

import itertools
print(list(itertools.repeat('Yang', 3)))
# ['Yang', 'Yang', 'Yang']

7.2 itertools.cycle():通过循环获取无限迭代器

itertools.cycle函数在中断循环之前不会停止:

import itertools

count = 0

for c in itertools.cycle('Yang'):
    if count >= 12:
        break
    else:
        print(c, end=',')
        count += 1
# Y,a,n,g,Y,a,n,g,Y,a,n,g,

7.3 itertools.count():生成一个无限的数字序列

如果需要的只是数字,可以使用itertools.count函数:

import itertools

for i in itertools.count(0, 2):
    if i == 20:
        break
    else:
        print(i, end=" ")
# 0 2 4 6 8 10 12 14 16 18

如上所示,它的第一个参数是起始数字,第二个参数是步长。

8. itertools.pairwise():轻松获取成对的元组

自Python 3.10以来,itertools模块新增了一个名为pairwise的新函数。它是一个简洁的工具,可以从可迭代对象生成连续重叠的成对元素。

import itertools

letters = ['a', 'b', 'c', 'd', 'e']

result = itertools.pairwise(letters)

print(list(result))
# [('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')]

9. itertools.takewhile():以不同的方式过滤元素

itertools.takewhile()返回一个迭代器,只要给定的谓词函数评估为True,该迭代器就会生成可迭代对象中的元素。

import itertools

nums = [1, 61, 7, 9, 2077]

print(list(itertools.takewhile(lambda x: x < 100, nums)))
# [1, 61, 7, 9]

此函数与内置的filter()函数不同。

filter函数将遍历整个列表:

nums = [1, 61, 7, 9, 2077]

print(list(filter(lambda x: x < 10, nums)))
# [1, 7, 9]

然而,itertools.takewhile函数会在评估函数为False时停止:

import itertools

nums = [1, 61, 7, 9, 2077]

print(list(itertools.takewhile(lambda x: x < 10, nums)))
# [1]

10. itertools.dropwhile():itertools.takewhile的反向操作

这个函数是上一个函数的逆操作。

itertools.takewhile()函数在True时返回可迭代对象中的元素,而itertools.dropwhile()函数会在True时删除可迭代对象的元素,并返回剩余的元素。

import itertools

nums = [1, 61, 7, 9, 2077]

print(list(itertools.dropwhile(lambda x: x < 100, nums)))
# [2077]

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...