LoRAShear:微软在LLM修剪和知识恢复方面的最新研究
创始人
2025-07-06 09:31:20
0

LoRAShear是微软为优化语言模型模型(llm)和保存知识而开发的一种新方法。它可以进行结构性修剪,减少计算需求并提高效率。

LHSPG技术( Lora Half-Space Projected Gradient)支持渐进式结构化剪枝和动态知识恢复。可以通过依赖图分析和稀疏度优化应用于各种llm。

LoRAPrune将LoRA与迭代结构化修剪相结合,实现参数高效微调。在LLAMA v1上的实现即使进行了大量的修剪也能保持相当的性能。

在不断发展的人工智能领域,语言模型模型(llm)已经成为处理大量文本数据、快速检索相关信息和增强知识可访问性的关键工具。它们的深远影响跨越了各个领域,从增强搜索引擎和问答系统到启用数据分析,研究人员、专业人员和知识寻求者都从中获益。

而目前最大的问题是,信息的动态性要求LLM不断更新知识。一般情况下微调一直被用来向这些模型灌输最新的见解的方式,开发人员使用特定于领域的数据对预训练模型进行微调使其保持最新状态。因为组织和研究人员的定期更新对于保持llm与不断变化的信息景观保持同步至关重要。但微调的成本大且周期长。

为了应对这一迫切需要,微软的研究人员推出了一种开创性的方法——LoRAShear。这种创新的方法不仅简化了llm,而且促进了结构知识的恢复。结构修剪的核心是去除或减少神经网络架构中的特定组件,优化效率、紧凑性和计算需求。

微软的LoRAShear引入了LHSPG技术,支持渐进式结构化修剪。这种方法在LoRA模块之间无缝地传递知识,并集成了动态知识恢复阶段。微调过程类似于预训练和指示微调,确保llm保持更新和相关性。

LoRAShear通过依赖图分析可以扩展到一般llm,特别是在LoRA模块的支持范围内。所采用的算法为原始LLM和LoRA模块创建依赖关系图。除此以外还引入了一种结构化稀疏性优化算法,该算法利用LoRA模块信息来增强权重更新过程中的知识保存。

论文中还有一个称为LoRAPrune的集成技术,将LoRA与迭代结构化修剪相结合,实现了参数高效的微调和直接硬件加速。这种节省内存的方法完全依赖于LoRA的权重和梯度来进行修剪标准。这个过程包括构造一个跟踪图,确定要压缩的节点组,划分可训练的变量,并最终将它们返回给LLM。

论文通过在开源LLAMAv1上的实现,证明了LoRAShear的有效性。值得注意的是,修剪了20%的LLAMAv1只有1%的性能损失,而修剪了50%的模型在评估基准上保留了82%的性能。

LoRAShear代表了人工智能领域的重大进步。它不仅简化了LLM的使用方式,使其更有效率,而且确保了关键知识的保存。它可以使人工智能驱动的应用程序能够在优化计算资源的同时,与不断发展的信息环境保持同步。随着组织越来越依赖人工智能进行数据处理和知识检索,像LoRAShear这样的解决方案将在市场上发挥关键作用,提供效率和知识弹性。

论文地址:https://arxiv.org/abs/2310.18356

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...