谷歌大模型研究陷重大争议:训练数据之外完全无法泛化?网友:AGI奇点推迟了
创始人
2025-07-06 08:11:13
0

针对Transformer,谷歌DeepMind一项新的发现引起了不小争议:

它的泛化能力,无法扩展到训练数据以外的内容。

目前这一结论还没有进一步得到验证,但已经惊动了一众大佬,比如Keras之父Francois Chollet表示,如果消息为真,将成为大模型界的一件大事。

谷歌Transformer是今天大模型背后的基础架构,我们所熟悉的GPT里的“T”指的就是它。

一系列大模型表现出强大的上下文学习能力,可以快速学习示例并完成新的任务。

但现在,同样来自Google的研究人员似乎指出了它的致命缺陷——超出训练数据也就是人类已有知识之外,全都无能为力。

一时间,不少从业者认为AGI再次变得遥不可及。

然而,也有网友找出论文中更多关键却被忽略的细节,比如只做了GPT-2规模的试验,训练数据也不是语言等。

随着时间的推移,更多认真研究了这篇论文的网友则指出,研究结论本身没什么问题,但人们却基于此做出过度的解读。

而论文引发网友热议之后,其中一名作者也出来做了两点澄清:

首先实验中使用的是简单Transformer,既不“大”也不是语言模型;

其次,模型是可以学习新任务的,只是无法泛化到新类型的任务

此后,又有网友在Colab中重复了这一实验,却得到了完全不同的结果。

那么,我们就先来看看这篇论文,还有提出不同结果的Samuel,到底都说了什么。

新函数几乎无法预测

实验中,作者在基于Jax的机器学习框架上训练了规模接近GPT-2、只包含解码器的Transformer。

其中包括了12层,8个注意力头,嵌入空间维度为256,参数量约为950万。

为了测试它的泛化能力,作者使用了函数作为测试对象——将线性函数和正弦函数一起作为训练数据喂模型。

这两种函数对于此时的模型来说是已知,预测的结果自然也很好,但当研究者把线性函数和正弦函数进行了凸性组合时,问题就出现了。

凸性组合并没有那么神秘,作者构建出了形如f(x)=a·kx+(1-a)sin(x)的函数,在我们看来不过是两个函数按比例简单相加。

但我们之所以会这么认为,正是因为我们的大脑拥有这方面的泛化能力,而大模型就不一样了。

别看就是简单相加,对于只见过线性和正弦函数的模型来说,这就是一种全新的函数。

对于这种新函数,Transformer给出的预测可以说是毫无准确性可言(图4c)——于是作者就认为模型在函数上没有泛化能力。

图片

为了进一步验证自己的结论,作者调整了线性或正弦函数的权重,但即使这样Transformer的预测表现也没有显著的变化。

只有一点例外——当其中一项的权重接近1时,模型的预测结果和实际就比较吻合了。

但权重为1意味着,陌生的新函数直接变成了训练时见过的函数,这样的数据对于泛化能力来说显然没有什么意义。

进一步实验还显示,Transformer不仅对于函数的种类十分敏感,甚至同种函数也可能变成陌生条件。

研究人员发现,哪怕是单纯的正弦函数,只是改变其中的频率,模型的预测结果也会发生线束变化。

只有当频率接近训练数据中的函数时,模型才能给出比较准确的预测,当频率过高或过低时,预测结果出现了严重的偏差……

据此,作者认为,条件只要稍微有点不一样,大模型就不知道怎么做了,这不就是说明泛化能力差吗?

作者在文中也自述了研究中存在的一些局限性,如何将函数数据上的观察应用到token化的自然语言问题上。

团队也在语言模型上尝试了相似的试验但遇到一些障碍,如何适当定义任务族(相当于这里的函数种类)、凸组合等还有待解决。

而Samuel这边的模型规模更小,仅有4层,在Colab上训练5分钟后就可以泛化到线性与正弦函数的组合。

不能泛化又如何

综合全文来看,Quora CEO这篇文章的结论非常窄,只在很多假设下才能成立。

斯隆奖得主、UCLA教授顾全全说,这篇论文本身的结论不存在争议,但不应该被过度解读。

结合先前的研究,Transformer只是无法泛化到与预训练数据“明显不同”的内容,而实际上,大模型的泛化能力通常用任务多样性和任务复杂性来衡量。

如果仔细追究Transformer的泛化能力,恐怕要让子弹再飞一会儿了。

但是,就算真的缺乏泛化能力,又能怎么样呢?

英伟达AI科学家Jim Fan就说,这种现象其实没啥奇怪的,因为Transformer本来就不是万金油,大模型表现得好,是因为训练数据刚好是我们关心的内容

Jim进一步补充道,这就好像是在说,用一千亿张猫狗的照片训练视觉模型,接着让模型去识别飞机,然后发现,哇,居然真的不认识诶。

图片

不只是大模型,人类在遇到一些未知任务时也不一定能有解决方案,这是否也说明人类缺乏泛化能力呢?

图片

所以,在目标导向之下,无论是大模型还是人类,最终的目的还是要回到解决问题上来,而泛化只是一种手段。

借用这个表情包的说法,既然泛化能力欠缺,那就把它训练到没有训练之外的数据为止。

那么,对于这项研究,你有什么看法呢?

论文地址:https://arxiv.org/abs/2311.00871

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...