超火迷你GPT-4视觉能力暴涨,GitHub两万星,华人团队出品
创始人
2025-07-04 06:41:31
0

GPT-4V来做目标检测?网友实测:还没有准备好。

图片

虽然检测到的类别没问题,但大多数边界框都错放了。

没关系,有人会出手!

那个抢跑GPT-4看图能力几个月的迷你GPT-4升级啦——MiniGPT-v2

图片

△(左边为GPT-4V生成,右边为MiniGPT-v2生成)

而且只是一句简单指令:[grounding] describe this image in detail就实现的结果。

不仅如此,还轻松处理各类视觉任务。

圈出一个物体,提示词前面加个 [identify] 可让模型直接识别出来物体的名字。

图片

当然也可以什么都不加,直接问~

图片

MiniGPT-v2由来自MiniGPT-4的原班人马(KAUST沙特阿卜杜拉国王科技大学)以及Meta的五位研究员共同开发。

图片

上次MiniGPT-4刚出来就引发巨大关注,一时间服务器被挤爆,如今GItHub项目已超22000+星。

图片

此番升级,已经有网友开始用上了~

图片

多视觉任务的通用界面

大模型作为各文本应用的通用界面,大家已经司空见惯了。受此灵感,研究团队想要建立一个可用于多种视觉任务的统一界面,比如图像描述、视觉问题解答等。

图片

「如何在单一模型的条件下,使用简单多模态指令来高效完成各类任务?」成为团队需要解决的难题。

简单来说,MiniGPT-v2由三个部分组成:视觉主干、线性层和大型语言模型。

图片

该模型以ViT视觉主干为基础,所有训练阶段都保持不变。从ViT中归纳出四个相邻的视觉输出标记,并通过线性层将它们投影到 LLaMA-2语言模型空间中。

团队建议在训练模型为不同任务使用独特的标识符,这样一来大模型就能轻松分辨出每个任务指令,还能提高每个任务的学习效率。

训练主要分为三个阶段:预训练——多任务训练——多模式指令调整。

图片

最终,MiniGPT-v2 在许多视觉问题解答和视觉接地基准测试中,成绩都优于其他视觉语言通用模型。

图片

最终这个模型可以完成多种视觉任务,比如目标对象描述、视觉定位、图像说明、视觉问题解答以及从给定的输入文本中直接解析图片对象。

图片

感兴趣的朋友,可戳下方Demo链接体验:

https://minigpt-v2.github.io/
https://huggingface.co/spaces/Vision-CAIR/MiniGPT-v2

论文链接:https://arxiv.org/abs/2310.09478

GitHub链接:https://github.com/Vision-CAIR/MiniGPT-4

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
Windows恶意软件20年“... 在Windows的早期年代,病毒游走于系统之间,偶尔删除文件(但被删除的文件几乎都是可恢复的),并弹...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...