又一个选择PostgreSQL的理由:单表1亿性能对比
创始人
2025-07-02 18:21:06
0

今天测试一下 1 亿条数据,MySQL 和 PostgreSQL 的性能表现。说明下,只是做一些基本的测试,并没有用一些数据库 Benchmark 工具进行测试。

准备

建表语句:

CREATE TABLE user_mysql / user_postgresql (
                                 id SERIAL PRIMARY KEY,
                                 username VARCHAR(50),
                                 email VARCHAR(100),
                                 password VARCHAR(100),
                                 first_name VARCHAR(50),
                                 last_name VARCHAR(50),
                                 address VARCHAR(200),
                                 city VARCHAR(50),
                                 state VARCHAR(50),
                                 zip_code VARCHAR(10),
                                 country VARCHAR(50),
                                 phone_number VARCHAR(50),
                                 date_of_birth DATE,
                                 gender VARCHAR(10),
                                 occupation VARCHAR(100),
                                 education_level VARCHAR(50),
                                 registration_date TIMESTAMP,
                                 last_login TIMESTAMP,
                                 is_active BOOLEAN,
                                 is_admin BOOLEAN,
                                 additional_field1 VARCHAR(100),
                                 additional_field2 VARCHAR(100)
);

接下来记录一下相关数据。

1.插入耗时

  • MySQL:≈ 67分钟
  • PostgreSQL:≈ 55分钟

2.count(*)耗时

MySQL:45 s 877 ms,明细如下:

mydatabase> select count(*) from user_mysql
[2023-09-26 22:22:24] 1 row retrieved starting from 1 in 45 s 877 ms (execution: 45 s 767 ms, fetching: 110 ms)

PostgreSQL:8 s 169 ms,明细如下:

postgres.public> select count(*) from user_postgresql
[2023-09-26 22:24:08] 1 row retrieved starting from 1 in 8 s 169 ms (execution: 8 s 133 ms, fetching: 36 ms)

1亿数据量1亿数据量

3.根据主键查询数据

MySQL:47 ms,明细如下:

mydatabase> select * from user_mysql where id = 19279833
[2023-09-26 22:28:10] 1 row retrieved starting from 1 in 47 ms (execution: 16 ms, fetching: 31 ms)

PostgreSQL:46 ms,明细如下:

postgres.public> select * from user_postgresql where id = 19279833
[2023-09-26 22:29:51] 1 row retrieved starting from 1 in 46 ms (execution: 15 ms, fetching: 31 ms)

4.根据username查询(无索引)

MySQL:1 m 56 s 986 ms,明细如下:

// 查询第99279833行数据
mydatabase> select * from user_mysql where username = '10190439674'
[2023-09-26 22:36:09] 1 row retrieved starting from 1 in 1 m 56 s 986 ms (execution: 1 m 56 s 939 ms, fetching: 47 ms)

PostgreSQL:38 s 73 ms,明细如下:

// 同样查询第99279833行数据
postgres.public> select * from user_postgresql where username = '14998727834'
[2023-09-26 22:38:25] 1 row retrieved starting from 1 in 38 s 73 ms (execution: 38 s 18 ms, fetching: 55 ms)

5.创建索引耗时

MySQL创建B+TREE索引:5 m 31 s 276 ms,明细如下:

mydatabase> ALTER TABLE user_mysql ADD INDEX idx_name (username)
[2023-09-26 22:47:37] completed in 5 m 31 s 276 ms

PostgreSQL创建B-TREE索引:9 m 20 s 847 ms,明细如下:

postgres.public> CREATE INDEX idx_name ON user_postgresql (username)
[2023-09-26 22:57:59] completed in 9 m 20 s 847 ms

6.根据username查询(有索引)

MySQL:93 ms,明细如下:

// 查询第99279833行数据
mydatabase> select * from user_mysql where username = '10190439674'
[2023-09-26 23:01:48] 1 row retrieved starting from 1 in 93 ms (execution: 0 ms, fetching: 93 ms)

PostgreSQL:63 ms,明细如下:

// 同样查询第99279833行数据
postgres.public> select * from user_postgresql where username = '14998727834'
[2023-09-26 23:00:07] 1 row retrieved starting from 1 in 63 ms (execution: 0 ms, fetching: 63 ms)

7.根据username修改(有索引)

MySQL:16 ms,明细如下:

mydatabase> update user_mysql set email='myemail' where username = '10190439674'
[2023-09-26 23:06:05] 1 row affected in 16 ms

PostgreSQL:15 ms,明细如下:

postgres.public> update user_postgresql set email='myemail' where username = '14998727834'
[2023-09-26 23:07:13] 1 row affected in 15 ms

8.分页查询(不加条件)

MySQL:1 m 40 s 265 ms,明细如下:

mydatabase> select * from user_mysql limit 89999980, 20
[2023-09-26 23:10:54] 20 rows retrieved starting from 1 in 1 m 40 s 265 ms (execution: 1 m 40 s 234 ms, fetching: 31 ms)

PostgreSQL:27 s 750 ms,明细如下:

postgres.public> select * from user_postgresql limit 20 offset 89999980
[2023-09-26 23:12:32] 20 rows retrieved starting from 1 in 27 s 750 ms (execution: 27 s 688 ms, fetching: 62 ms)

9.分页查询(加条件,条件为索引)

MySQL:94 ms,明细如下:

mydatabase> select * from user_mysql where id >= 89999980 limit 20
[2023-09-26 23:13:34] 20 rows retrieved starting from 1 in 94 ms (execution: 0 ms, fetching: 94 ms)

PostgreSQL:78 ms,明细如下:

postgres.public> select * from user_postgresql where id >= 89999980 limit 20
[2023-09-26 23:14:12] 20 rows retrieved starting from 1 in 78 ms (execution: 0 ms, fetching: 78 ms)

总结

在数据量达到1亿时,数据库操作的开销都会比较大,尤其是不走索引的操作和DDL操作等。因此在生产环境时,不建议数据量太大,数据库特别大的情况下,建议使用更强大的数据库,不建议分表分库。对大表进行DDL操作时也需要谨慎操作。

声明:这些数据均为本机测试,并未用专业测试软件测试,仅供参考。

相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...