在Python中创建相关系数矩阵的六种方法
创始人
2025-07-02 08:40:24
0

相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结

Pandas

Pandas的DataFrame对象可以使用corr方法直接创建相关矩阵。由于数据科学领域的大多数人都在使用Pandas来获取数据,因此这通常是检查数据相关性的最快、最简单的方法之一。

import pandas as pd
 import seaborn as sns
 
 data = sns.load_dataset('mpg')
 correlation_matrix = data.corr(numeric_only=True)
 correlation_matrix

图片

如果你是统计和分析相关工作的,你可能会问" p值在哪里?",在最后我们会有介绍

Numpy

Numpy也包含了相关系数矩阵的计算函数,我们可以直接调用,但是因为返回的是ndarray,所以看起来没有pandas那么清晰。

import numpy as np
 from sklearn.datasets import load_iris
 
 iris = load_iris()
 np.corrcoef(iris["data"])

为了更好的可视化,我们可以直接将其传递给sns.heatmap()函数。

import seaborn as sns
 
 data = sns.load_dataset('mpg')
 correlation_matrix = data.corr()
 
 sns.heatmap(data.corr(), 
            annot=True, 
            cmap='coolwarm')

annot=True这个参数可以输出一些额外的有用信息。一个常见hack是使用sns.set_context('talk')来获得额外的可读输出。

这个设置是为了生成幻灯片演示的图像,它能帮助我们更好地阅读(更大的字体)。

Statsmodels

Statsmodels这个统计分析库也是肯定可以的

import statsmodels.api as sm
 
 correlation_matrix = sm.graphics.plot_corr(
    data.corr(), 
    xnames=data.columns.tolist())

plotly

默认情况下plotly这个结果是如何从左下到右上运行对角线1.0的。这种行为与大多数其他工具相反,所以如果你使用plotly需要特别注意

import plotly.offline as pyo
 pyo.init_notebook_mode(cnotallow=True)
 
 import plotly.figure_factory as ff
 
 correlation_matrix = data.corr()
 
 fig = ff.create_annotated_heatmap(
    z=correlation_matrix.values, 
    x=list(correlation_matrix.columns), 
    y=list(correlation_matrix.index), 
    colorscale='Blues')
 
 fig.show()

Pandas + Matplotlib更好的可视化

这个结果也可以直接使用用sns.pairplot(data),两种方法产生的图差不多,但是seaborn只需要一句话

sns.pairplot(df[['mpg','weight','horsepower','acceleration']])

所以我们这里介绍如何使用Matplotlib来实现

import matplotlib.pyplot as plt
 
 pd.plotting.scatter_matrix(
    data, alpha=0.2, 
    figsize=(6, 6), 
    diagnotallow='hist')
 
 plt.show()

相关性的p值

如果你正在寻找一个简单的矩阵(带有p值),这是许多其他工具(SPSS, Stata, R, SAS等)默认做的,那如何在Python中获得呢?

这里就要借助科学计算的scipy库了,以下是实现的函数

from scipy.stats import pearsonr
 import pandas as pd
 import seaborn as sns
 
 def corr_full(df, numeric_notallow=True, rows=['corr', 'p-value', 'obs']):
    """
    Generates a correlation matrix with correlation coefficients, 
    p-values, and observation count.
     
    Args:
    - df:                 Input dataframe
    - numeric_only (bool): Whether to consider only numeric columns for 
                            correlation. Default is True.
    - rows:               Determines the information to show. 
                            Default is ['corr', 'p-value', 'obs'].
     
    Returns:
    - formatted_table: The correlation matrix with the specified rows.
    """
     
    # Calculate Pearson correlation coefficients
    corr_matrix = df.corr(
        numeric_notallow=numeric_only)
     
    # Calculate the p-values using scipy's pearsonr
    pvalue_matrix = df.corr(
        numeric_notallow=numeric_only, 
        method=lambda x, y: pearsonr(x, y)[1])
     
    # Calculate the non-null observation count for each column
    obs_count = df.apply(lambda x: x.notnull().sum())
     
    # Calculate observation count for each pair of columns
    obs_matrix = pd.DataFrame(
        index=corr_matrix.columns, columns=corr_matrix.columns)
    for col1 in obs_count.index:
        for col2 in obs_count.index:
            obs_matrix.loc[col1, col2] = min(obs_count[col1], obs_count[col2])
         
    # Create a multi-index dataframe to store the formatted correlations
    formatted_table = pd.DataFrame(
        index=pd.MultiIndex.from_product([corr_matrix.columns, rows]), 
        columns=corr_matrix.columns
    )
     
    # Assign values to the appropriate cells in the formatted table
    for col1 in corr_matrix.columns:
        for col2 in corr_matrix.columns:
            if 'corr' in rows:
                formatted_table.loc[
                    (col1, 'corr'), col2] = corr_matrix.loc[col1, col2]
             
            if 'p-value' in rows:
                # Avoid p-values for diagonal they correlate perfectly
                if col1 != col2:
                    formatted_table.loc[
                        (col1, 'p-value'), col2] = f"({pvalue_matrix.loc[col1, col2]:.4f})"
            if 'obs' in rows:
                formatted_table.loc[
                    (col1, 'obs'), col2] = obs_matrix.loc[col1, col2]
     
    return(formatted_table.fillna('')
            .style.set_properties(**{'text-align': 'center'}))

直接调用这个函数,我们返回的结果如下:

df = sns.load_dataset('mpg')
 result = corr_full(df, rows=['corr', 'p-value'])
 result

图片

总结

我们介绍了Python创建相关系数矩阵的各种方法,这些方法可以随意选择(那个方便用哪个)。Python中大多数工具的标准默认输出将不包括p值或观察计数,所以如果你需要这方面的统计,可以使用我们子厚提供的函数,因为要进行全面和完整的相关性分析,有p值和观察计数作为参考是非常有帮助的。


相关内容

热门资讯

如何允许远程连接到MySQL数... [[277004]]【51CTO.com快译】默认情况下,MySQL服务器仅侦听来自localhos...
如何利用交换机和端口设置来管理... 在网络管理中,总是有些人让管理员头疼。下面我们就将介绍一下一个网管员利用交换机以及端口设置等来进行D...
施耐德电气数据中心整体解决方案... 近日,全球能效管理专家施耐德电气正式启动大型体验活动“能效中国行——2012卡车巡展”,作为该活动的...
20个非常棒的扁平设计免费资源 Apple设备的平面图标PSD免费平板UI 平板UI套件24平图标Freen平板UI套件PSD径向平...
德国电信门户网站可实时显示全球... 德国电信周三推出一个门户网站,直观地实时提供其安装在全球各地的传感器网络检测到的网络攻击状况。该网站...
为啥国人偏爱 Mybatis,... 关于 SQL 和 ORM 的争论,永远都不会终止,我也一直在思考这个问题。昨天又跟群里的小伙伴进行...
《非诚勿扰》红人闫凤娇被曝厕所... 【51CTO.com 综合消息360安全专家提醒说,“闫凤娇”、“非诚勿扰”已经被黑客盯上成为了“木...
2012年第四季度互联网状况报... [[71653]]  北京时间4月25日消息,据国外媒体报道,全球知名的云平台公司Akamai Te...