译者 | 布加迪
审校 | 重楼
在上个世纪,从电子商务巨头到医疗服务机构和政府部门,数据已成为每家组织的生命线。有效地收集和管理这些数据可以为组织提供宝贵的洞察力,以帮助决策,然而这是一项艰巨的任务。
尽管数据很重要,但CIOinsight声称,只有10%的组织认为自己擅长数据分析管理。组织认识到数据利用方面的这一重大缺口后,积极采用现代数据架构来缩小缺口。
数据架构是结构化的框架和系统,它们定义了如何在组织内组织、集成和访问数据。架构为数据及其在数据存储系统中的流动明确了蓝图,并确立了指导原则。
本文讨论了数据架构的演变、基本原则以及采用现代数据架构有效管理组织数据的优点。
多年来,数据架构不断发展,以适应不断增长的业务需求。下面讨论的一个值得注意的转变是数据架构由逻辑仓库向数据结构(Data Fabrics)转变。
逻辑仓库又叫数据仓库,几十年来一直是数据管理的基础。这些数据仓库是中央存储库,旨在存储来自不同来源(比如事务系统、应用程序日志文件或关系数据库等)的数据,从而提供信息的统一视图。
通常,逻辑仓库使用提取、转换和加载(ETL)流程从源系统提取数据,对其进行转换以确保一致性,并加载到仓库中。逻辑仓库仅用于执行查询和分析,常常含有大量的历史数据。
逻辑仓库面临的挑战
虽然逻辑仓库发挥了其作用,但随着数据量增加,它们面临几个挑战。一些主要的限制包括如下:
为了应对数据仓库的挑战,数据湖架构在2010年被引入。虽然数据湖架构与数据仓库非常相似,但两者的不同之处在于数据湖还适用于半结构化数据和非结构化数据。
数据湖以自然或原始格式存储大量数据的功能帮助我们:
数据湖面临的挑战
数据湖的这种开放格式特性使其比数据仓库更受欢迎。然而,数据湖带来了挑战,因为没有严格标准化而摄取的数据导致数据库中出现不一致。此外,存储在数据湖中的数据需要大量的转换和集成工作,然后才能用于复杂又耗时的分析。
数据网格架构是一种新兴的方法,它为中央数据湖架构提供了另一种选择。数据网格是由Zhamak Dehghani在2019年创造的,这种分散的数据架构按特定的业务领域组织数据。
通过引入面向领域的数据所有权,负责各领域的团队对其数据和产品负责,从而提高数据质量和治理。
传统的数据湖在处理大量数据时常常遇到可扩展性和性能方面的挑战。然而,数据网格架构通过其分散的自助式数据基础设施解决了这些可扩展性问题。
由于每个领域都可以自主地选择最适合其需求的技术和工具,数据网格允许团队独立地扩展其数据存储和处理系统。
数据结构是一种自适应、灵活又安全的集成式数据架构。它是一种架构方法和技术框架,通过提供跨各种数据源的统一集成数据视图来解决数据湖挑战。
通过应对数据集成、转换和移动中涉及的技术复杂性,数据结构允许更快速、更有效地访问数据,以便任何人都可以使用它。
据Dataversity声称,数据架构原则指一系列策略,以监管用于收集、集成和管理数据资产的企业数据框架和操作规则。这些原则帮助我们创建一致、可靠又高效的数据架构,使其与组织的目标和目的保持一致。
为了有效地利用数据作为一种有竞争力的资产,以下是需要遵循的几个常见现代数据架构原则:
下面讨论现代数据架构的一些特点:
在讨论了现代数据架构及其特点之后,下面讨论现代数据架构给企业和组织带来的好处。
数据在组织中越来越重要,这推动了数据架构的发展。从传统的数据仓库到现代的数据网格和数据结构方法,这些架构解决了特定的挑战,带来了新的机遇。
通过采用现代数据架构,组织可以得益于改进的数据质量和全面的数据洞察力,从而全面释放数据的潜力,并在当今世界保持竞争力。
原文标题:From data warehouse to data fabric: the evolution of data architecture